

DRAINAGE REPORT Parcel H Development Warehouse/Distribution Facility Northborough, MA

Prepared: 12/24/2019

Site Locus – Not to Scale

CLIENT:

The Gutierrez Company 200 Summit Drive, Suite 400 Burlington, MA 01803 **PREPARED BY**: Allen & Major Associates, Inc. Carlton Quinn, PE 100 Commerce Way, Suite 5 Woburn, Massachusetts 01801

allenmajor.com

DRAINAGE REPORT

Parcel H Warehouse/Distribution Facility 0 & 301 Bartlett Street Map 51 Parcel 3 & Map 66 Lot 16 Northborough, MA

PROPONENT:

The Gutierrez Company 200 Summit Drive, Suite 400 Burlington, MA 01803

PREPARED BY:

Allen & Major Associates, Inc. Carlton Quinn, PE 100 Commerce Way, Suite 5 Woburn, Massachusetts 01801

ISSUED: 12/24/2019

REVISED: N/A

A&M PROJECT NO .:

1145-09

TABLE OF CONTENTS

SECTION 1.0	5
INTRODUCTION	6
SITE CATEGORIZATION FOR STORMWATER REGULATIONS	6
SITE LOCATION AND ACCESS	6
EXISTING SITE CONDITIONS	6
WATERSHED	7
EXISTING SOIL CONDITIONS	7
FEMA FLOODPLAIN/ENVIRONMENTAL DUE DILIGENCE	7
ENVIRONMENTALLY SENSITIVE ZONES	8
EXISTING WATERSHED DESCRIPTION	8
DRAINAGE ANALYSIS METHODOLOGY	8
PROPOSED CONDITIONS – PEAK RATE OF RUNOFF	9
Peak Flow Rates	9
MASSDEP STORMWATER PERFORMANCE STANDARDS	9
MASSDEP STORMWATER CHECKLIST	14
SECTION 2.0	22
OPERATIONS AND MAINTENANCE PLAN	23
INTRODUCTION	23
DEMOLITION & CONSTRUCTION MAINTENANCE PLAN	24
POST CONSTRUCTION MAINTENANCE PLAN	25
Inspection and Maintenance Frequency and Corrective Measures	25
Monthly Post Construction Inspection (first three months only)	26
Quarterly Inspections (specifically after foliage and snow season)	
Semi-Annual Inspection (specifically after foliage and snow season)	26
LANDSCAPE MANAGEMENT PLAN	27
OPERATION & MAINTENANCE SUMMARY TABLE	31
SNOW DISPOSAL GUIDANCE	32
STORMWATER SYSTEM OPERATION & MAINTENANCE	35
SECTION 3.0	55
USGS SITE LOCUS MAP	

AERIAL PHOTO	57
MASSDEP WETLANDS MAP	58
FEMA FLOOD INSURANCE RATE MAP	59
NHESP MAP	60
SECTION 4.0	61
EXISTING HYDROCAD	62
PROPOSED HYDROCAD	80
SECTION 5.0	124
EXISTING WATERSHED	125
PROPOSED WATERSHED	126
PROPOSED GRADING & DRAINAGE PLAN	
SECTION 6.0	
SOIL HSG INFORMATION	130
RAINFALL DATA	137
MANNING'S ROUGHNESS COEFFICIENT TABLE	138
WQU TSS REMOVAL CALCULATION	139
MASSDEP STANDARD CALCULATIONS AND WQU SIZING	141
ILLICIT DISCHARGE STATEMENT	154

INTRODUCTION

The purpose of this drainage report is to provide an overview of the proposed stormwater management system (SMS) for the proposed warehouse/distribution facility development located at 0 & 301 Bartlett Street, Northborough, MA and identified on Town of Marlborough Assessors Map 51 Lot 3 and Assessors Map 66 Lot 16, and located entirely within the Town of Northborough. The report will show by means of narrative calculations and exhibits that the proposed stormwater management system will meet or exceed the 10 Massachusetts Department of Environmental Protection (MassDEP) stormwater standards.

The proposed site improvements include a 150,900+/- square foot (s.f.) industrial warehouse/distribution facility with associated parking lot, truck court with loading bays, stormwater management system, utilities and associated infrastructure as well as site landscaping and lighting. The project will be serviced by municipal sewer, and water and private gas and electric services.

The SMS incorporates structural and non-structural Best Management Practices (BMPs) to provide stormwater peak flow mitigation, quality treatment, and conveyance. The SMS includes street sweeping, catch basins with deep sumps and hoods, drain manholes, infiltration ponds and water quality units.

SITE CATEGORIZATION FOR STORMWATER REGULATIONS

The proposed site improvements at 0 & 301 Bartlett Street is considered a new development under the DEP Stormwater Management Standards due to the net increase in impervious area. A "new development" project is required to meet all of the Stormwater Management Standards listed within the MA DEP Stormwater Handbook.

SITE LOCATION AND ACCESS

The subject parcel is 0 and 301 Bartlett Street. The parcels are 66.08 total acres and are located in the town of Northborough, on the Northborough/Marlborough town line.

Northborough is located in Worcester County and is approximately 30 miles west of Boston. The site is also approximately located 2 miles west of Interstate 495.

EXISTING SITE CONDITIONS

The site currently includes Assessors Map 51 Lot 3, Assessors Map 66 Lot 16. The project site is 66.08 acres and is currently an undeveloped lot with forested uplands, wetlands, a stream known as Stirrup Brook which runs along the northernmost property lines, and priority habitat PH-1286.

The lot is bordered by Stirrup Brook to the north and west, industrial lots on Hayes Memorial Drive in Marlborough to the east, and a DRC aqueduct that abuts an industrial lot on Bartlett Street.

The highest point on the site is along Bartlett Street at approximately elevation 290. The site topography for the 0 Bartlett Street parcel has a localized high point near the center at approximately elevation 273. From the center of the 0 Bartlett subject site, steep slopes run down toward wetlands on all sides. The wetlands which surround the subject property are the low points on-site, and vary in elevation, but typically fall in elevation range of Elev. 240 to the north to Elev. 254 to the west.

WATERSHED

The subject property is located within the Sudbury-Assabet-Concord Watershed which consists of a large network of tributaries that flow into the Merrimack River. The three major rivers that flow through the watershed - the Sudbury, the Assabet, and the Concord - have been recognized for their outstanding ecological, historical, and recreational values. The watershed is also home to the two largest wetlands in Central Massachusetts, the Great Meadows NWR and the Great Cedar Swamp. The SuAsCo watershed has a total drainage area of 377 square miles, encompasses all or part of 36 cities and towns, supports a population of close to 365,000 people and is comprised of 29 miles of free-flowing river in the watershed.

EXISTING SOIL CONDITIONS

The on-site soils were identified using the USDA Natural Resources Conservation Services (NRCS) Soil Survey for Worcester County. The site soil types and corresponding Hydrologic Soil Groups (HSG) include:

- SCS 31A Walpole sandy loam, 0 to 3 percent slopes, HSG B/D
- SCS 51A Swansea muck, 0 to 1 percent slopes, HSG B/D
- SCS 245C Hinckley loamy sand, 8 to 15 percent slopes, HSG A
- SCS 254B Merrimac Fine Sandy Loam, 3-8 percent slopes, HSG A
- SCS 311B Woodbridge fine sandy loam, 0 to 8 percent slopes, HSG C/D

Soils on-site include types A, B/D, and C/D. A copy of the soil mapping from the NRCS website is included in the Appendix of this report. Soils within the proposed development and stormwater management system include HSG "A" and HSG "B". The HydroCAD model reflects these HSG groups.

FEMA FLOODPLAIN/ENVIRONMENTAL DUE DILIGENCE

The Flood Insurance Rate Map (FIRM) (Map Number 25027C0653F) for the town of Northborough dated 07/16/2014 indicates that the parcel lies within the FEMA A Zone, as well as Zone X (unshaded). The FEMA A Zone in this area is defined as "areas subject to inundation by the 1-percent-annual-chance flood event". Zone X (unshaded) lie outside of the 1-percent-annual-chance and 0.2-percent-annual-chance flood event

zones. No Base Flood Elevations (BFEs) are identified for the subject site. The subject parcel site is outside of the 500-year Floodplain. No work is proposed within the Zone A flood event zone. See the Appendix of this report for a copy of the FEMA FIRM.

ENVIRONMENTALLY SENSITIVE ZONES

The Commonwealth of Massachusetts asserts control over numerous protected and regulated areas including: Areas of Critical Environmental Concern (ACEC); Outstanding Resource Waters (ORWs); areas protected under the Wetlands Protection Act and the Rivers Protection Act, as well as Priority and Protected Habitat for rare and endangered species. According to the MassGIS online map viewer OLIVER, the subject property is not located within ACEC or ORW areas.

EXISTING WATERSHED DESCRIPTION

To study peak flow rates the site is broken into 2 study points and 4 watersheds. Under existing conditions, study point 1 is the bordering vegetated wetland to the northwest of the watershed, while study point 2 is the wetlands to the northeast of the watershed.

Under existing conditions, runoff directed to study point 1 is collected from watersheds E-1 and E-1A. The total area draining to the study point is 357,005 square feet, of which, 0% is directed from impervious areas. See existing watershed plan for more information.

Runoff from watersheds E-2 and E-2A is directed to Study point 2. The total area draining to the study point is 317,101 square feet, of this area 0.13% is impervious. See existing watershed plan for more information.

DRAINAGE ANALYSIS METHODOLOGY

A peak rate of runoff will be determined using techniques and data found in the following:

- <u>Urban Hydrology for Small Watersheds</u> Technical Release 55 by the United States Department of Agriculture Soils Conservation Service, June 1986. Runoff curve numbers and 24-hour precipitation values were obtained from this reference.
- <u>HydroCAD© Stormwater Modeling System</u> by HydroCAD Software Solutions LLC, version 10.00, 2013. The HydroCAD program was used to generate the runoff hydrographs for the watershed areas, to determine discharge/ stage/storage characteristics for the stormwater BMPs, to perform drainage routing and to combine the results of the runoff hydrographs. HydroCAD uses the TR-20 methodology of the SCS Unit Hydrograph procedure (SCS-UH).

PROPOSED CONDITIONS – PEAK RATE OF RUNOFF

The storm water runoff analysis of the existing and proposed conditions includes an estimate of the peak rate of runoff from various rainfall events. Peak runoff rates were developed using TR55 Urban Hydrology for Small Watersheds, developed by the U.S. Department of Commerce, Engineering Division and the HydroCAD computer program. Further, the analysis has been prepared in accordance with the MassDEP and standard engineering practices. The peak rate of runoff has been estimated for each watershed during the 2, 10 and 100-year storm events.

Study point 1 receives runoff from the following watersheds: P-7, P-8, P-9, P-10, P-11, P-13, P-14, P-15A, and P-17. The total area draining to the study point is 324,231 square feet, and of this area, 39.05% is impervious. See proposed watershed plan and grading and drainage plan for more information.

Study point 2 receives runoff from the following watersheds: P-1, P-2, P-3, P-4, P-5, P-12, P-15B, P-16, P-18, P-19, P-20, P-21, P-22, P-23, P-24, and P-25. The total area draining to the study point is 349,875 square feet, of this area 50.91% is impervious. See proposed watershed plan and grading and drainage plan for more information.

Peak Flow Rates

Study Form #1 (110W to wetlands)			
	2-Year	10-Year	100-Year
Existing Runoff (CFS)	0.03	0.24	0.77
Proposed Runoff (CFS)	0.00	0.13	0.74
% REDUCTION	100%	46%	4%
Study Point #2 (Flow to wetlands)			
	2-Year	10-Year	100-Year
Existing Runoff (CFS)	0.21	1.15	3.44
Proposed Runoff (CFS)	0.14	1.05	3.44
% REDUCTION	33%	9%	0%

Study Point #1 (Flow to wetlands)

MASSDEP STORMWATER PERFORMANCE STANDARDS

The MA DEP Stormwater Management Policy was developed to improve water quality by implementing performance standards for storm water management. The intent is to implement the stormwater management standards through the review of Notice of Intent filings by the issuing authority (Conservation Commission or DEP). The following section outlines how the proposed Stormwater Management System meets the standards set forth by the Policy. BMP's implemented in the design include -

- Deep-sump, hooded catch basins
- Street sweeping
- Hydro-dynamic (Proprietary) separators
- Surface infiltration systems
- Specific maintenance schedule

Stormwater Best Management Practices have been incorporated into the design of the project to mitigate the anticipated pollutant loading. An Operations and Maintenance Plan has been developed for the project, which addresses the long-term maintenance requirements of the proposed system.

Temporary erosion and sedimentation controls will be incorporated into the construction phase of the project. These temporary controls may include straw bale and/or silt fence barriers, inlet sediment traps, slope stabilization, and stabilized construction entrances.

The Massachusetts Department of Environmental Protection has established ten (10) Stormwater Management Standards. A project that meets or exceeds the standards is presumed to satisfy the regulatory requirements regarding stormwater management. The Standards are enumerated below as well as descriptions and supporting calculations as to how the Project will comply with the Standards:

1. No new stormwater conveyances (e.g. outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

The proposed development will not introduce any new stormwater conveyances (e.g. outfalls) that discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

2. Stormwater management systems shall be designed so that post-development peak discharge rates do not exceed pre-development peak discharge rates. This Standard may be waived for discharges to land subject to coastal storm flowage as defined in 310 CMR 10.04.

The proposed development will be designed so that the post-development peak discharge rates and volumes do not exceed the pre-development peak discharge rates and volumes. See the peak flow rates table above.

3. Loss of annual recharge to groundwater shall be eliminated or minimized through the use of infiltration measures including environmentally sensitive site design, low impact development techniques, stormwater best management practices, and good operation and maintenance. At a minimum, the annual recharge from the postdevelopment site shall approximate the annual recharge from pre-development conditions based on soil type. This Standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook.

The existing annual recharge for the site will be exceeded in the developed condition. Infiltration basins will be designed to meet this requirement. All Infiltration Systems were designed using the Static Method per the MassDEP Stormwater Management Standards, Volume 3, Chapter 1. See Section 6.5 for water quality/recharge calculations in the DEP Standard calculations located in the Appendix of this Drainage report for more detailed information.

- 4. Stormwater management systems shall be designed to remove 80% of the average annual post-construction load of Total Suspended Solids (TSS). This standard is met when:
 - Suitable practices for source control and pollution prevention are identified in a long-term pollution prevention plan, and thereafter are implemented and maintained;
 - Structural stormwater best management practices are sized to capture the required water quality volume determined in accordance with the Massachusetts Stormwater Handbook; and
 - Pretreatment is provided in accordance with the Massachusetts Stormwater Handbook.

The proposed stormwater management system will be designed so that effluent will meet the 80% TSS treatment removal standard. Standard #4 is met when structural stormwater best management practices are sized to capture and treat the required water quality volume in accordance with the Massachusetts Stormwater Handbook. Standard #4 also requires that suitable source control measures are identified in the Long-Term Pollution Prevention Plan. The 80% total TSS removal standard will be met using some combination of the following: deep-sump, hooded catch basins, infiltration basins and proprietary separators.

The water quality volume for the site development will be captured and treated using proprietary separators and infiltration basins. All systems will be sized to meet the water quality flow rate for the 1/2" storm event. See DEP Calculations in the appendix of this report for water quality flow rate and volume calculations, as well as the TSS treatment train.

5. For land uses with higher potential pollutant loads, source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable. If through source control and/or pollution prevention all land uses with higher potential pollutant loads cannot be

completely protected from exposure to rain, snow, snow melt, and stormwater runoff, the proponent shall use the specific structural stormwater BMPs determined by the Department to be suitable for such uses as provided in the Massachusetts Stormwater Handbook. Stormwater discharges from land uses with higher potential pollutant loads shall also comply with the requirements of the Massachusetts Clean Waters Act, M.G.L. c. 21, §§ 26-53 and the regulations promulgated thereunder at 314 CMR 3.00, 314 CMR 4.00 and 314 CMR 5.00.

The proposed development is not considered a source of higher potential pollutant loads and the drainage system will be designed to treat 1/2" water quality volume. The SMS will be designed with deep-sump, hooded catch basins, proprietary separators, and infiltration basins.

6. Stormwater discharges within the Zone II or Interim Wellhead Protection Area of a public water supply, and stormwater discharges near or to any other critical area, require the use of the specific source control and pollution prevention measures and the specific structural stormwater best management practices determined by the Department to be suitable for managing discharges to such areas, as provided in the Massachusetts Stormwater Handbook. A discharge is near a critical area if there is a strong likelihood of a significant impact occurring to said area, taking into account site-specific factors. Stormwater discharges to Outstanding Resource Waters and Special Resource Waters shall be removed and set back from the receiving water or wetland and receive the highest and best practical method of treatment. A "storm water discharge" as defined in 314 CMR 3.04(2)(a)1 or (b) to an Outstanding Resource Water or Special Resource Water shall comply with 314 CMR 3.00 and 314 CMR 4.00. Stormwater discharges to a Zone I or Zone A are prohibited unless essential to the operation of a public water supply.

The proposed project is not located within a critical area.

7. A redevelopment project is required to meet the following Stormwater Management Standards only to the maximum extent practicable: Standard 2, Standard 3, and the pretreatment and structural best management practice requirements of Standards 4, 5, and 6. Existing stormwater discharges shall comply with Standard 1 only to the maximum extent practicable. A redevelopment project shall also comply with all other requirements of the Stormwater Management Standards and improve existing conditions.

The proposed project is not considered a re-development project under the Stormwater Management Handbook guidelines as there is an increase in the amount of impervious area. A "new development" project is required to meet all of the ten Stormwater Standards listed within the MA DEP Stormwater Handbook.

8. A plan to control construction-related impacts including erosion, sedimentation and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan) shall be developed and implemented.

A plan to control construction-related impacts, including erosion, sedimentation and other pollutant sources during construction and land disturbance activities will be developed. The proponent will prepare and submit a Stormwater Pollution Prevention Plan (SWPPP) prior to commencement of construction activities for this project as it will result in the disturbance of one acre of land or more.

9. A long-term operation and maintenance plan shall be developed and implemented to ensure that stormwater management systems function as designed.

A Long-Term Operation & Maintenance (O&M) Plan has been developed for the proposed stormwater management system and is included within this document. See Section 2.0 of this report.

10. All illicit discharges to the stormwater management system are prohibited.

There are no expected illicit discharges to the stormwater management system. The applicant has submitted the Illicit Discharge Compliance Statement with this report.

See the next page for the MassDEP Stormwater Checklist.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

17,24,19 Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Redevelopment

Mix of New Development and Redevelopment

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

- No disturbance to any Wetland Resource Areas
- Site Design Practices (e.g. clustered development, reduced frontage setbacks)
- Reduced Impervious Area (Redevelopment Only)
- Minimizing disturbance to existing trees and shrubs
- LID Site Design Credit Requested:
 - Credit 1
 - Credit 2
 - Credit 3
- Use of "country drainage" versus curb and gutter conveyance and pipe
- Bioretention Cells (includes Rain Gardens)
- Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
- Treebox Filter
- U Water Quality Swale
- Grass Channel
- Green Roof
- Other (describe): Surface Infiltration Ponds; Hydrodynamic Separators, Catch Basins with Deep Sumps and Hoods, Street Sweeping

Standard 1: No New Untreated Discharges

- No new untreated discharges
- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

\boxtimes	Soil	Anal	ysis	provided.
-------------	------	------	------	-----------

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
- Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- · Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

Checklist ((continued)
-------------	-------------

Standard 4: Water Quality (continued)

- The BMP is sized (and calculations provided) based on:
 - The 1/2" or 1" Water Quality Volume or
 - The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
- The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
- A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

- The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
- The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted **prior to** the discharge of stormwater to the post-construction stormwater BMPs.
- The NPDES Multi-Sector General Permit does *not* cover the land use.
- LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
- All exposure has been eliminated.
- All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list.
- The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

	_imited	Pro	ject
--	---------	-----	------

Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.

Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area

- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

SECTION 2.0 OPERATION & MAINTENANCE PLAN

OPERATIONS AND MAINTENANCE PLAN

In accordance with the standards set forth by the Stormwater Management Policy issued by the Department of Environmental Protection (DEP), Allen & Major Associates, Inc. (A&M) has prepared the following Operation and Maintenance plan for the 0 & 301 Bartlett Street drainage improvements.

This plan is broken into two major sections. The first section describes constructionrelated erosion and sedimentation controls. The second section is devoted to a postdevelopment operation and maintenance plan. An operation and maintenance schedule is included with this report.

Stormwater Management System Owner:	The Gutierrez Company
	200 Summit Drive, Suite 400
	Burlington, MA 01803

Emergency Contact Information:

The Gutierrez Company	Phone: (781) 272-7000
Allen & Major Associates, Inc.	Phone: (781) 935-6889
(Site Civil Engineer)	
Northborough Public Works Department	Phone: (508) 393-5030
Northborough Fire Department	Phone: (508) 393-1537

INTRODUCTION

The stormwater management system (SMS) for this project is owned by the Gutierrez Company, and shall be legally responsible for long-term operation and maintenance for this SMS as outlined in this Operation and Maintenance (O&M) Plan. Should ownership of the SMS change, the succeeding owner will be presented with this O&M Plan and supporting attachments at or before legal conveyance of ownership and will assume the obligations of the O&M Plan.

In the event that the SMS will be operated and maintained by an entity other than that listed in this document, the applicant shall provide a plan and easement deed that provides a right of access for the legal entity to be able to perform said operation and maintenance functions. In the event the SMS will serve multiple lots/owners, the applicant shall also provide a copy of the legal instrument (deed, homeowner's association, utility trust, or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the entire SMS.

DEMOLITION & CONSTRUCTION MAINTENANCE PLAN

- 1. Call Digsafe: 1-888-344-7233
- 2. Contact the city at least three (3) days prior to start of demolition and/or construction activities.
- 3. Install Erosion Control measures as shown on the Plans prepared by A&M. The municipality shall review the installation of straw bales and silt fencing prior to the start of any site demolition work. Install construction fencing if determined to be necessary at the commencement of construction.
- 4. Install construction entrances, straw bales, and silt fence at the locations shown on the Erosion Control Plan prepared by A&M.
- 5. Site access shall be achieved only from the designated construction entrances.
- 6. Cut and clear trees in construction areas only (within the limit of work; see plans).
- 7. Stockpiles of materials subject to erosion shall be stabilized with erosion control matting or temporary seeding whenever practicable, but in no case more than 14 days after the construction activity in that portion of the site has temporarily or permanently ceased.
- 8. Install silt sacks and straw bales around each drain inlet prior to any demolition and or construction activities and within downgradient areas along Bartlett Street.
- 9. All erosion control measures shall be inspected weekly and after every rainfall event as well as per the NPDES SWPPP regulations and the Conservation Commission Order of Conditions. Records of these inspections shall be kept on-site for review.
- 10. All erosion control measures shall be maintained, repaired, or replaced as required or at the direction of the owner's engineer or the municipality.
- 11. Sediment accumulation up-gradient of the straw bales, silt fence, and stone check dams greater than 6" in depth shall be removed and disposed of in accordance with all applicable regulations.
- 12. If it appears that sediment is exiting the site, silt sacks shall be installed in all catch basins adjacent to the site. Sediment accumulation on all adjacent catch basin inlets shall be removed and the silt sack replaced if torn or damaged.
- 13. Install stone check dams on-site during construction as needed. Refer to the erosion control details. Temporary sediment basins combined with stone check damns shall be installed on-site during construction to control and collect runoff from upland areas of this site during demolition and construction activities.

- 14. The contractor shall comply with the Sedimentation and Erosion Control Notes as shown on the Site Development Plans and Specifications.
- 15. The stabilized construction entrances shall be inspected weekly and records of inspections kept. The entrances shall be maintained by adding additional clean, angular, durable stone to remove the soil from the construction vehicle's tires when exiting the site. If soil is still leaving the site via the construction vehicle tires, adjacent roadways shall be kept clean by street sweeping.
- 16. Dust pollution shall be controlled using on-site water trucks and/or an approved soil stabilization product.
- 17. During demolition and construction activities, Status Reports on compliance with this O&M Document shall be submitted weekly. The report shall document any deficiencies and corrective actions taken by the applicant.

POST CONSTRUCTION MAINTENANCE PLAN

The SMS shall be inspected immediately after construction. A maintenance log will be kept (i.e. report) summarizing inspections, maintenance, and any corrective actions taken. The log will include the date on which each inspection or maintenance task was performed, a description of the inspection findings or maintenance completed, and the name of the inspector or maintenance personnel performing the task. If a maintenance task requires the clean-out of any sediments or debris, the location where the sediment and debris was disposed after removal will be indicated. The log will be made accessible to department staff and a copy provided to the department upon request.

Inspection and Maintenance Frequency and Corrective Measures

The following areas, facilities, and measures will be inspected and the identified deficiencies will be corrected. Clean-out must include the removal and legal disposal of any accumulated sediments, trash, and debris. In any and all cases, operations, inspections, and maintenance activities shall utilize best practical measures to avoid and minimize impacts to wetland resource areas outside the foot print of the SMS.

The following SMS components that will require continuing inspection as outlined in the document:

- Deep Sump Catch Basins
- Proprietary Separators
- Surface Infiltration Ponds
- Outlet Control Structures
- Emergency Spillways/Overflow

Monthly Post Construction Inspection (first three months only)

• **Surface Detention/Infiltration Systems**: Inspect the pond after all rainfalls greater than 1" to ensure that the system to ensure the slopes are not washing out and that the basin is draining within 72 hours. Repair as required.

Quarterly Inspections (specifically after foliage and snow season)

- **Deep Sump Catch Basins**: Inspect catch basins to ensure that the catch basins are working in their intended fashion and that they are free of debris. Structures will be skimmed of floatable debris at each inspection and sediment will be removed at a minimum once per year (typically after snow season) or when sediment has accumulated to within 2 feet of the outlet invert. If the basin outlet is designed with a hood to trap floatable materials (i.e. Snout), check to ensure watertight seal is working.
- **Proprietary Separators**: Separators shall be operated in strict accordance with manufacturer's recommended practices. Available manufacturer specific O&M plans attached as Appendix. Separators shall be inspected to ensure that they are working in their intended fashion and that they are free of debris. Structures shall be cleaned with a vacuum truck at least once annually (typically after snow season) or when sediment has accumulated to a depth of six inches (6"), whichever is more frequent.

Semi-Annual Inspection (specifically after foliage and snow season)

- **Culverts**: Inspect culverts to ensure that the culverts are working in their intended fashion and that they are free of debris. Remove any obstructions to flow; remove accumulated sediments and debris at the inlet, at the outlet, and within the conduit and to repair any erosion damage at the culvert's inlet and outlet.
- **Vegetated Areas:** Inspect slopes and embankments early in the growing season to identify active or potential erosion problems. Replant bare areas or areas with sparse growth. Where rill erosion is evident, armor the area with an appropriate lining or divert the erosive flows to on-site areas able to withstand the concentrated flows.
- **Roadway and Parking Surfaces:** Sweep paved areas as soon as possible after snow melt and no less than four times annually. Clear accumulations of winter sand in parking lots and along roadways at least once a year, preferably in the spring. Accumulations on pavement may be removed by pavement sweeping. Accumulations of sand along road shoulders may be removed by grading excess sand to the pavement edge and removing it manually or by a front-end loader.

• Level Spreaders, Check Dams, Rip-Rap: These accessories will be inspected for erosion, debris accumulation, and unwanted vegetation. Erosion will be stabilized and sediment, debris, and woody vegetation will be removed.

LANDSCAPE MANAGEMENT PLAN

It should be recognized that this is a general guideline towards achieving high quality and well-groomed landscaped areas. The grounds staff/landscape contractor must recognize the shortcomings of a general maintenance program such as this, and modify and/or augment it based on weekly, monthly, and yearly observations. In order to assure the highest quality conditions, the staff must also recognize and appreciate the need to be award of the constantly changing conditions of the landscaping and be able to respond to them on a proactive basis.

- **Fertilizer**: Maintenance practices should be aimed at reducing environmental, mechanical, and pest stresses to promote healthy and vigorous growth. When necessary, pest outbreaks should be treated with the most sensitive control measure available. Synthetic chemical controls should be used only as a last resort to organic and biological control methods. Fertilizer, synthetic chemical controls and pest management applications (when necessary) should be used as conservatively as possible.
- **Suggested Aeration Program**: In-season aeration of lawn areas is good cultural practice, and is recommended whenever feasible. It should be accomplished with a solid thin tine aeration method to reduce disruption to the use of the area. The depth of solid tine aeration is similar to core type, but should be performed when the soil is somewhat drier for a greater overall effect.
 - Depending on the intensity of use, it can be expected that all landscaped lawn areas will need aeration to reduce compaction at least once per year. The first operation should occur in late May following the spring season. Methods of reducing compaction will vary based on the nature of the compaction. Compaction on newly established landscape areas is generally limited to the top 2-3" and can be alleviated using hollow core or thin tine aeration methods.
 - The spring aeration should consist of two passes at opposite directions with ¼" hollow core tines penetrating 3-5" into the soil profile. Aeration should occur when the soil is moist but not saturated. The cores should be shattered in place and dragged or swept back into the turf to control thatch. If desired the cores may also be removed and the area top-dressed with sand or sandy loam. If the area drains on average too slowly, the topdressing should contain a higher percentage of sand. If it is draining on average too quickly, the top dressing should contain a higher percentage of soil or organic matter.

Landscape Maintenance Program Practices

Lawn

- Mow a minimum of once a week in spring, to a height of 2" to 2 ¹/₂" high. Mowing should be frequent enough so that no more than 1/3 of grass blade is removed at each mowing. The top growth supports the roots; the shorter the grass is cut, the less the roots will grow. Short cutting also dries out the soil and encourages weeds to germinate.
- Mow approximately once every two weeks from July 1st to August 15th depending on lawn growth.
- Mow on a ten-day cycle in fall, when growth is stimulated by cooler nights and increased moisture.
- Do not remove grass clippings after mowing (Except in Drainage BMP's).
- Keep mower blades sharp to prevent ragged cuts on grass leaves, which cause a brownish appearance and increase the chance for disease to enter a leaf.
- Supplemental irrigation of lawn areas should provide 1" of water per week in two watering's per week—when no natural rainfall has occurred.

Shrubs

- Mulch not more than 3" depth with shredded pine or fir bark.
- Hand pruning shall be performed annually based on the natural growth characteristics of each species to keep plants from overgrowing walks and windows. NO SHEARING OF SHRUBS IS PERMITTED. Typically, pruning of each variety shall be immediately after blooming.
- Fertilize with ¹/₂ lb. slow-release fertilizer (see above section on Fertilizer) every second year.
- Hand-prune evergreen shrubs only as needed to remove dead and damaged wood and to maintain the naturalistic form of the shrub. Never mechanically shear evergreen shrubs.

Trees

- Provide aftercare for new tree plantings for the first three years.
- Do not fertilize trees, it artificially stimulates them (unless tree health warrants).
- Water once a week for the first year; twice a month the second year; once a month the third year.
- Prune trees on a four-year cycle.

Maintenance Phase

By the fourth growing season, the planted grasslands should be reaching maturity. At this time, half of the grassland habitat area should be mown annually in mid- August to maintain the grassland habitat, limiting the opportunity for shrubs and late-blooming forbs to spread, and allowing the grasses time to recover before dormancy.

Management of Deicing Chemicals and Snow

Snow shall not be plowed towards any area protected by the Massachusetts Wetlands Protection Act. Additionally, it is prohibited to dump snow into the bioretention swales, or gravel swales. If the stockpiles of snow do not fit on-site, then snow will be disposed off-site. It will be the responsibility of the snow removal contractor to properly dispose of transported snow according to the Massachusetts Department of Environmental Protection, Bureau of Resource Protection – Snow Disposal Guideline #BRPG01-0, governing the proper disposal of snow. It will be the responsibility of the snow removal contractor to follow these guidelines and all applicable laws and regulations. A copy of the MassDEP Snow Disposal Guideline #BRPG01-01 has been included at the end of Section 2 for reference.

The site's maintenance staff (or its designee) will be responsible for the clearing of the sidewalk and building entrances. The site may be required to use a de-icing agent such as potassium chloride (or approved equal) to maintain a safe walking surface; however, these are to be used at the minimum amount practicable. The de-icing agent for the walkways and building entrances will be kept within the storage rooms located within the buildings. De-icing agents will not be stored outside.

Spill Prevention and Response

Sources of potential spill hazards include vehicle fluids, liquid fuels, pesticides, paints, solvents, and liquid cleaning products. The majority of the spill hazards would likely occur within the building and would not enter the stormwater drainage system. However, there are spill hazards from vehicle fluids or liquid fuels located outside of the buildings. These exterior spill hazards have the potential to enter the stormwater drainage system and are to be addressed as follows:

- Spill Hazards of pesticides, paints, and solvents shall be remediated using the Manufacturers' recommended spill cleanup protocol.
- Vehicle fluids and liquid fuel spill shall be remediated according to the local and state regulations governing fuel spills.
- The owner shall have the following equipment and materials on hand to address a spill clean-up: brooms, dust pans, mops, rags, gloves, absorptive material, sand, sawdust, plastic and metal trash containers.

- All spills shall be cleaned up immediately after discovery.
- Spills of toxic or hazardous material shall be reported, regardless of size, to the Massachusetts Department of Environmental Protection at 888-304-1133.
- Should a spill occur, the pollution prevention plan will be adjusted to include measures to prevent another spill of a similar nature. A description of the spill, along with the causes and cleanup measures will be included in the updated pollution prevention plan.

OPERATION & MAINTENANCE PLAN SCHEDULE

Project: Parcel H Warehouse/Distribution Center Development Address: 0 & 301 Barltett Street Northborough, MA / Responsible for O & M Plan: The Gutierrez Company Address: 200 Summit Drive, Suite 400 Burlington, MA 01803

 Date:
 12/24/2019

 Revised:
 N/A

Phone: 781-272-7000

Structure or Task	Maintenance Activity	Schedule/Notes	Annual Maintenance Cost	Inspection	Performed
Structure of Task		Schedule/Noles	Annual Maintenance Cost	Date:	By:
Street Sweeping	Sweep, power broom or vacuum paved areas.	Sweep paved areas as needed, but not less than four times annually.	\$2,000		
Street Sweeping	Sweep, power broom of vacuum paved areas.	Submit information that confirms that all street sweepings have been disposed in accordance with state and local requirements	ψ2,000		
Deep Sump Catch		Inspect at least twice annually. Clean when sediment is within 2 feet of the outlet invert.			
Basins(s)		Submit information that confirms that all catch basin sediments have been disposed in accordance with state and local requirements	\$500		
Proprietary Stormwater Separator	Vactor trucks or manual cleaning. Clean units in accordance with manufacturers recommendations and requirements. Clam shell not recommended for these units.	Inspect in accordance with manufacturers requirements, but no less than monthly for the first year following installation, and no less than once a year thereafter. Remove sediment and other trapped pollutants at frequency or level specified by manufacturer or when the sediment depth in the chamber reaches 12 inches.	\$2,000		
Storm Water Management System					
	Inspect to ensure it is draining properly. Inspect inlets, outlets and riprap and repair immediately	Perform every other month as well as after every storm event over 1/2". See also note #1	\$2,500		
Surface Basins	Side slopes mowed at least twice during growing season	below.			
	Inspect system bottoms and remove any accumulated sediment greater than 6 inches	On a semi-annual basis.			
Outlet Control Structure(s)	Vacuum.	Periodic cleaning of Outlet Control Structures as needed.	\$500		
Mosquito Control	CB management targeted larviciding treatment to CB's and all storm drains to control mosquitoes in their aquatic stages.	Surveillance is a non chemical inspection method that involves classification of mosquito breeding sites, larval presents, and survey.	\$100		
Snow Storage	Debris shall be cleared from the site and properly disposed of at the end of the snow season, but shall be cleared no later than May 15.	Avoid dumping snow removal over catch basins, in detention ponds, sediment forebays, rivers, wetlands, and flood plain. It is also prohibited to dump snow in the bioretention basins or gravel swales.	\$500		

Energy and Environmental Affairs

A Home > Agencies > MassDEP > Water Resources > Laws & Rules > Snow Disposal Guidance

Snow Disposal Guidance

Effective Date: March 8, 2001

Guideline No. BRPG01-01

Applicability: Applies to all federal, state, regional and local agencies, as well as to private businesses.

Supersedes: BRP Snow Disposal Guideline BRPG97-1 issued 12/19/97, and all previous snow disposal guidance

Approved by: Glenn Haas, Assistant Commissioner for Resource Protection

PURPOSE: To provide guidelines to all government agencies and private businesses regarding snow disposal site selection, site preparation and maintenance, and emergency snow disposal options that are acceptable to the Department of Environmental Protection, Bureau of Resource Protection.

APPLICABILITY: These Guidelines are issued by the Bureau of Resource Protection on behalf of all Bureau Programs (including Drinking Water Supply, Wetlands and Waterways, Wastewater Management, and Watershed Planning and Permitting). They apply to public agencies and private businesses disposing of snow in the Commonwealth of Massachusetts.

INTRODUCTION

Finding a place to dispose of collected snow poses a challenge to municipalities and businesses as they clear roads, parking lots, bridges, and sidewalks. While we are all aware of the threats to public safety caused by snow, collected snow that is contaminated with road salt, sand, litter, and automotive pollutants such as oil also threatens public health and the environment.

As snow melts, road salt, sand, litter, and other pollutants are transported into surface water or through the soil where they may eventually reach the groundwater. Road salt and other pollutants can contaminate water supplies and are toxic to aquatic life at certain levels. Sand washed into waterbodies can create sand bars or fill in wetlands and ponds, impacting aquatic life, causing flooding, and affecting our use of these resources.

There are several steps that communities can take to minimize the impacts of snow disposal on public health and the environment. These steps will help communities avoid the costs of a contaminated water supply, degraded waterbodies, and flooding. Everything we do on the land has the potential to impact our water resources. Given the authority of local government over the use of the land, municipal officials and staff have a critically important role to play in protecting our water resources.

The purpose of these guidelines is to help municipalities and businesses select, prepare, and maintain appropriate snow disposal sites before the snow begins to accumulate through the winter.

RECOMMENDED GUIDELINES

These snow disposal guidelines address: (1) site selection; (2) site preparation and maintenance; and (3) emergency snow disposal.

1. SITE SELECTION

The key to selecting effective snow disposal sites is to locate them adjacent to or on pervious surfaces in upland areas away from water resources and wells. At these locations, the snow meltwater can filter in to the soil, leaving behind sand and debris which can be removed in the springtime. The following areas should be avoided:

- Avoid dumping of snow into any waterbody, including rivers, the ocean, reservoirs, ponds, or wetlands. In addition to
 water quality impacts and flooding, snow disposed of in open water can cause navigational hazards when it freezes into
 ice blocks.
- Do not dump snow within a Zone II or Interim Wellhead Protection Area (IWPA) of a public water supply well or within 75 feet of a private well, where road salt may contaminate water supplies.
- Avoid dumping snow on MassDEP-designated high and medium-yield aquifers where it may contaminate groundwater (see the next page for information on ordering maps from MassGIS showing the locations of aquifers, Zone II's, and IWPAs in your community).
- Avoid dumping snow in sanitary landfills and gravel pits. Snow meltwater will create more contaminated leachate in landfills posing a greater risk to groundwater, and in gravel pits, there is little opportunity for pollutants to be filtered out of the meltwater because groundwater is close to the land surface.

Avoid disposing of snow on top of storm drain catch basins or in stormwater drainage swales or ditches. Snow
combined with sand and debris may block a storm drainage system, causing localized flooding. A high volume of sand,
sediment, and litter released from melting snow also may be quickly transported through the system into surface water.

Site Selection Procedures

- 1. It is important that the municipal Department of Public Works or Highway Department, Conservation Commission, and Board of Health work together to select appropriate snow disposal sites. The following steps should be taken:
- 2. Estimate how much snow disposal capacity is needed for the season so that an adequate number of disposal sites can be selected and prepared.
- 3. Identify sites that could potentially be used for snow disposal such as municipal open space (e.g., parking lots or parks).
- 4. Sites located in upland locations that are not likely to impact sensitive environmental resources should be selected first.
- 5. If more storage space is still needed, prioritize the sites with the least environmental impact (using the site selection criteria, and local or MassGIS maps as a guide).

MassGIS Maps of Open Space and Water Resources

If local maps do not show the information you need to select appropriate snow disposal sites, you may order maps from MassGIS (Massachusetts Geographic Information System) which show publicly owned open spaces and approximate locations of sensitive environmental resources (locations should be field-verified where possible). Different coverages or map themes depicting sensitive environmental resources are available from MassGIS on the map you order. At a minimum, you should order the Priority Resources Map. The Priority Resources Map includes aquifers, public water supplies, MassDEP-approved Zone II's, Interim Wellhead Protection Areas, Wetlands, Open Space, Areas of Critical Environmental Concern, NHESP Wetlands Habitats, MassDEP Permitted Solid Waste facilities, Surface Water Protection areas (Zone A's) and base map features. The cost of this map is \$25.00. Other coverages or map themes you may consider, depending on the location of your city or town, include Outstanding Resource Waters and MassDEP Eelgrass Resources. These are available at \$25.00 each, with each map theme being depicted on a separate map. Maps should be ordered from MassGIS . Maps may also be ordered by fax at 617-626-1249 (order form available from the MassGIS web site) or mail. For further information, contact MassGIS at 617-626-1189.

2. SITE PREPARATION AND MAINTENANCE

In addition to carefully selecting disposal sites before the winter begins, it is important to prepare and maintain these sites to maximize their effectiveness. The following maintenance measures should be undertaken for all snow disposal sites:

- A silt fence or equivalent barrier should be placed securely on the downgradient side of the snow disposal site.
- To filter pollutants out of the meltwater, a 50-foot vegetative buffer strip should be maintained during the growth season between the disposal site and adjacent waterbodies.
- Debris should be cleared from the site prior to using the site for snow disposal.
- Debris should be cleared from the site and properly disposed of at the end of the snow season and no later than May 15.

3. EMERGENCY SNOW DISPOSAL

As mentioned earlier, it is important to estimate the amount of snow disposal capacity you will need so that an adequate number of upland disposal sites can be selected and prepared.

If despite your planning, upland disposal sites have been exhausted, snow may be disposed of near waterbodies. A vegetated buffer of at least 50 feet should still be maintained between the site and the waterbody in these situations. Furthermore, it is essential that the other guidelines for preparing and maintaining snow disposal sites be followed to minimize the threat to adjacent waterbodies.

Under extraordinary conditions, when all land-based snow disposal options are exhausted, disposal of snow that is not obviously contaminated with road salt, sand, and other pollutants may be allowed in certain waterbodies under certain conditions. In these dire situations, notify your Conservation Commission and the appropriate MassDEP Regional Service Center before disposing of snow in a waterbody.

Use the following guidelines in these emergency situations:

- Dispose of snow in open water with adequate flow and mixing to prevent ice dams from forming.
- Do not dispose of snow in saltmarshes, vegetated wetlands, certified vernal pools, shellfish beds, mudflats, drinking water reservoirs and their tributaries, Zone IIs or IWPAs of public water supply wells, Outstanding Resource Waters, or Areas of Critical Environmental Concern.
- Do not dispose of snow where trucks may cause shoreline damage or erosion.
- Consult with the municipal Conservation Commission to ensure that snow disposal in open water complies with local

ordinances and bylaws.

FOR MORE INFORMATION

If you need more information, contact one of MassDEP's Regional Service Centers:

Northeast Regional Office, Wilmington, 978-694-3200 Southeast Regional Office, Lakeville, 508-946-2714 Central Regional Office, Worcester, 508-792-7683 Western Regional Office, Springfield, 413-755-2214

or

Call Thomas Maguire of DEP's Bureau of Resource Protection in Boston at 617-292-5602.

© 2014 Commonwealth of Massachusetts. Mass.Gov® is a registered service mark of the Commonwealth of Massachusetts. EEA Site Policies Contact EEA About EEA

Chapter 5 Miscellaneous Stormwater Topics

Mosquito Control in Stormwater Management Practices

Both aboveground and underground stormwater BMPs have the potential to serve as mosquito breeding areas. Good design, proper operation and maintenance and treatment with larvicides can minimize this potential.

EPA recommends that stormwater treatment practices dewater within 3 days (72 hours) to reduce the number of mosquitoes that mature to adults, since the aquatic stage of many mosquito species is 7 to 10 days. Massachusetts has had a 72-hour dewatering rule in its Stormwater Management Standards since 1996. The 2008 technical specifications for BMPs set forth in Volume 2, Chapter 2 of the Massachusetts Stormwater Handbook also concur with this practice by requiring that all stormwater practices designed to drain do so within 72 hours.

Some stormwater practices are designed to include permanent wet pools. These practices – if maintained properly – can limit mosquito breeding by providing habitat for mosquito predators. Additional measures that can be taken to reduce mosquito populations include increasing water circulation, attracting mosquito predators by adding suitable habitat, and applying larvicides.

The Massachusetts State Reclamation and Mosquito Control Board (SRMCB), through the Massachusetts Mosquito Control Districts, can undertake further mosquito control actions specifically for the purpose of mosquito control pursuant to Massachusetts General Law Chapter 252. The Mosquito Control Board, <u>http://www.mass.gov/agr/mosquito/</u>, describes mosquito control methods and is in the process of developing guidance documents that describe Best Management Practices for mosquito control projects.

The SRMCB and Mosquito Control Districts are not responsible for operating and maintaining stormwater BMPs to reduce mosquito populations. The owners of property that construct the stormwater BMPs or municipalities that "accept" them through local subdivision approval are responsible for their maintenance.¹ The SRMCB is composed of officials from MassDEP, Department of Agricultural Resources, and Department of Conservation and Recreation. The nine (9) Mosquito Control Districts overseen by the SRMCB are located throughout Massachusetts, covering 176 municipalities.

Construction Period Best Management Practices for Mosquito Control

To minimize mosquito breeding during construction, it is essential that the following actions be taken to minimize the creation of standing pools by taking the following actions:

- *Minimize Land Disturbance:* Minimizing land disturbance reduces the likelihood of mosquito breeding by reducing silt in runoff that will cause construction period controls to clog and retain standing pools of water for more than 72 hours.
- *Catch Basin inlets:* Inspect and refresh filter fabric, hay bales, filter socks or stone dams on a regular basis to ensure that any stormwater ponded at the inlet drains within 8 hours after precipitation stops. Shorter periods may be necessary to avoid hydroplaning in roads

¹ MassDEP and MassHighway understand that the numerous stormwater BMPs along state highways pose a unique challenge. To address this challenge, the 2004 MassHighway Stormwater Handbook will provide additional information on appropriate operation and maintenance practices for mosquito control when the Handbook is revised to reflect the 2008 changes to the Stormwater Management Standards..

caused by water ponded at the catch basin inlet. Treat catch basin sumps with larvicides such as *Bacillus sphaericus* (*Bs*) using a licensed pesticide applicator.

- *Check Dams:* If temporary check dams are used during the construction period to lag peak rate of runoff or pond runoff for exfiltration, inspect and repair the check dams on a regular basis to ensure that any stormwater ponded behind the check dam drains within 72 hours.
- **Design construction period sediment traps** to dewater within 72 hours after precipitation. Because these traps are subject to high silt loads and tend to clog, treat them with the larvicide *Bs* after it rains from June through October, until the first frost occurs.
- *Construction period open conveyances:* When temporary manmade ditches are used for channelizing construction period runoff, inspect them on a regular basis to remove any accumulated sediment to restore flow capacity to the temporary ditch.
- *Revegetating Disturbed Surfaces:* Revegetating disturbed surfaces reduces sediment in runoff that will cause construction period controls to clog and retain standing pools of water for greater than 72 hours.
- *Sediment fences/hay bale barriers:* When inspections find standing pools of water beyond the 24-hour period after a storm, take action to restore barrier to its normal function.

Post-Construction Stormwater Treatment Practices

- Mosquito control begins with the environmentally sensitive site design. Environmentally sensitive site design that minimizes impervious surfaces reduces the amount of stormwater runoff. Disconnecting runoff using the LID Site Design credits outlined in the Massachusetts Stormwater Handbook reduces the amount of stormwater that must be conveyed to a treatment practice. Utilizing green roofs minimizes runoff from smaller storms. Storage media must be designed to dewater within 72 hours after precipitation.
- Mosquito control continues with the selection of structural stormwater BMPs that are unlikely to become breeding grounds for mosquitoes, such as:
 - **Bioretention Areas/Rain Gardens/Sand Filter:** These practices tend not to result in mosquito breeding. If any level spreaders, weirs or sediment forebays are used as part of the design, inspect them and correct them as necessary to prevent standing pools of water for more than 72 hours.
 - *Infiltration Trenches:* This practice tends not to result in mosquito breeding. If any level spreaders, weirs, or sediment forebays are used as part of the design, inspect them and correct them as necessary to prevent standing pools of water for more than 72 hours.
- Another mosquito control strategy is to select BMPs that can become habitats for mosquito predators, such as:
 - *Constructed Stormwater Wetlands:* Habitat features can be incorporated in constructed stormwater wetlands to attract dragonflies, amphibians, turtles, birds, bats, and other natural predators of mosquitoes.
 - Wet Basins: Wet basins can be designed to incorporate fish habitat features, such as deep pools. Introduce fish in consultation with Massachusetts Division of Fisheries and Wildlife. Vegetation within wet basins designed as fish habitat must be properly managed to ensure that vegetation does not overtake the habitat. Proper design to ensure that no low circulation or "dead" zones are created may reduce the potential for mosquito breeding. Introducing bubblers may increase water circulation in the wet basin.

Massachusetts Stormwater Handbook

Effective mosquito controls require proponents to design structural BMPs to prevent ponding and facilitate maintenance and, if necessary, the application of larvicides. Examples of such design practices include the following:

- **Basins:** Provide perimeter access around wet basins, extended dry detention basins and dry detention basins for both larviciding and routine maintenance. Control vegetation to ensure that access pathways stay open.
- *BMPs without a permanent pool of water:* All structural BMPs that do not rely on a permanent pool of water must drain and completely dewater within 72 hours after precipitation. This includes dry detention basins, extended dry detention basins, infiltration basins, and dry water quality swales. Use underdrains at extended dry detention basins to drain the small pools that form due to accumulation of silts. Wallace indicates that extended dry extended detention basins may breed more mosquitoes than wet basins. It is, therefore, imperative to design outlets from extended dry detention basins to completely dewater within the 72-hour period.
- *Energy Dissipators and Flow Spreaders:* Currier and Moeller, 2000 indicate that shallow recesses in energy dissipators and flow spreaders trap water where mosquitoes breed. Set the riprap in grout to reduce the shallow recesses and minimize mosquito breeding.
- *Outlet control structures:* Debris trapped in small orifices or on trash racks of outlet control structures such as multiple stage outlet risers may clog the orifices or the trash rack, causing a standing pool of water. Optimize the orifice size or trash rack mesh size to provide required peak rate attenuation/water quality detention/retention time while minimizing clogging.
- *Rain Barrels and Cisterns:* Seal lids to reduce the likelihood of mosquitoes laying eggs in standing water. Install mosquito netting over inlets. The cistern system should be designed to ensure that all collected water is drained into it within 72 hours.
- Subsurface Structures, Deep Sump Catch Basins, Oil Grit Separators, and Leaching Catch Basins: Seal all manhole covers to reduce likelihood of mosquitoes laying eggs in standing water. Install mosquito netting over the outlet (CALTRANS 2004).

The Operation and Maintenance Plan should provide for mosquito prevention and control.

- *Check dams:* Inspect permanent check dams on the schedule set forth in the O&M Plan. Inspect check dams 72 hours after storms for standing water ponding behind the dam. Take corrective action if standing water is found.
- *Cisterns:* Apply *Bs* larvicide in the cistern if any evidence of mosquitoes is found. The Operation and Maintenance Plan shall specify how often larvicides should be applied to waters in the cistern.
- *Water quality swales:* Remove and properly dispose of any accumulated sediment as scheduled in the Operation and Maintenance Plan.
- *Larvicide Treatment:* The Operation and Maintenance Plan must include measures to minimize mosquito breeding, including larviciding.
- The party identified in the Operation and Maintenance Plan as responsible for maintenance shall see that larvicides are applied as necessary to the following stormwater treatment practices: catch basins, oil/grit separators, wet basins, wet water quality swales, dry extended detention basins, infiltration basins, and constructed stormwater wetlands. The Operation and Maintenance Plan must ensure that all larvicides are applied by a licensed pesticide applicator and in compliance with all pesticide label requirements.
- The Operation and Maintenance Plan should identify the appropriate larvicide and the time and method of application. For example, *Bacillus sphaericus (Bs)*, the preferred

larvicide for stormwater BMPs, should be hand-broadcast.² Alternatively, Altosid, a Methopren product, may be used. Because some practices are designed to dewater between storms, such as dry extended detention and infiltration basins, the Operation and Maintenance Plan should provide that larviciding must be conducted during or immediately after wet weather, when the detention or infiltration basin has a standing pool of water, unless a product is used that can withstand extended dry periods.

REFERENCES

California Department of Transportation, 2004, BMP Retrofit Pilot Program, Final Report, Report ID CTSW - RT - 1 - 050,

http://www.dot.ca.gov/hq/env/stormwater/special/newsetup/_pdfs/new_technology/CTSW-RT-01-050.pdf#xml=http://dap1.dot.ca.gov/cgi-

bin/texis/webinator/search/pdfhi.txt?query=mosquito&db=db&pr=www&prox=page&rorder=50 0&rprox=500&rdfreq=500&rwfreq=500&rlead=500&sufs=0&order=r&cq=&id=4673373b7 Appendix E: Vector Monitoring and Abatement,

<u>http://www.dot.ca.gov/hq/env/stormwater/special/newsetup/_pdfs/new_technology/</u> California Department of Transportation, 2001, Final Vector Report, Caltrans BMP Retrofit

Project Sites, Districts 7 and 11, <u>http://www.dot.ca.gov/hq/env/stormwater/special/newsetup/_pdfs/new_technology/CTSW-RT-</u>01-050/AppendixE/01_FinalVectorReport.pdf

Currier, Brian, and Moeller, 2000, Glenn, Lessons Learned: The CALTRANS Storm Water Best Management Practice Retrofit Pilot Study, prepared by the California State University Sacramento and University of California Davis for the California Department of Transportation, http://www.owp.csus.edu/research/papers/papers/PP015.pdf

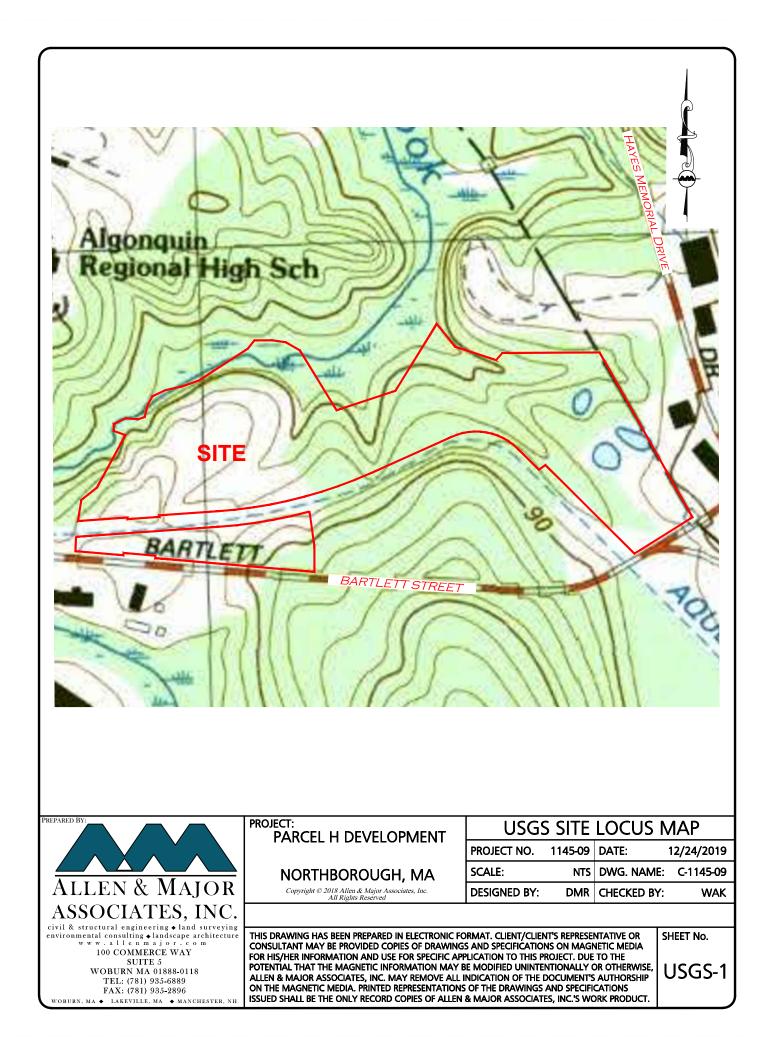
Massachusetts Department of Environmental Protection, 2001, West Nile Virus, Application of Pesticides to Wetland Resource Areas and Buffer Zones and Public Water systems, Guideline No. BRPG01-02, <u>http://www.mass.gov/dep/water/wnvpolcy.doc</u>

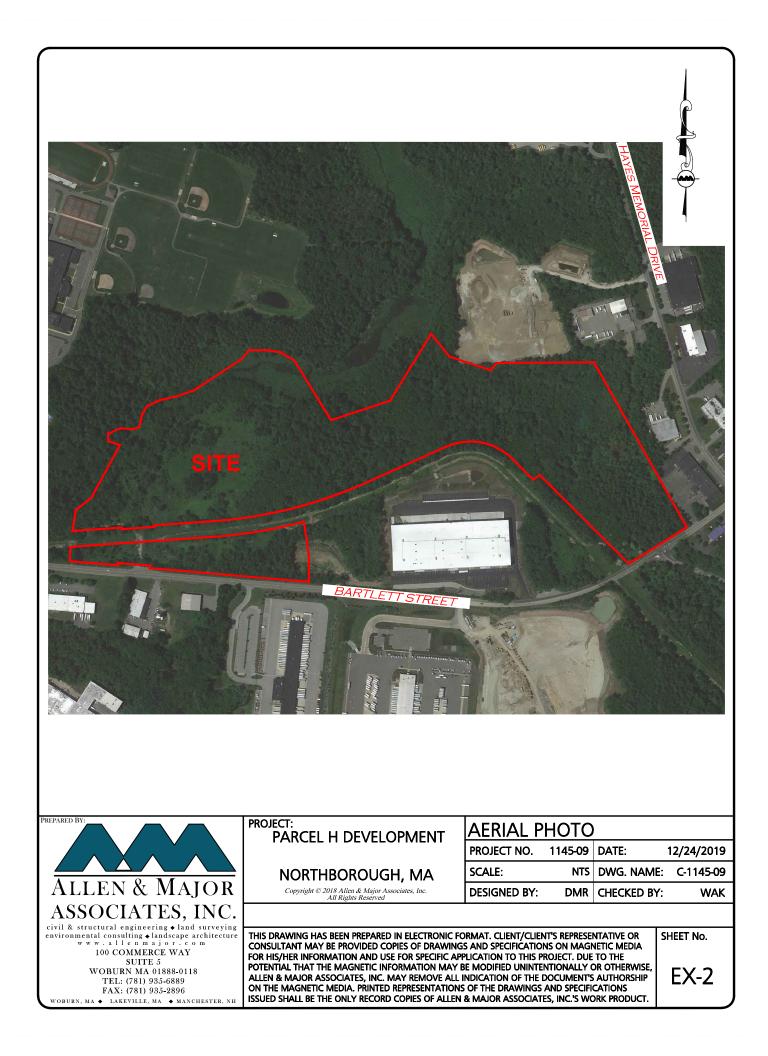
O'Meara, G.F., 2003, Mosquitoes Associated With Stormwater Detention/Retention Areas, ENY627, University of Florida, Institute of Food and Agricultural Sciences Extension, <u>http://edis.ifas.ufl.edu/mg338</u>

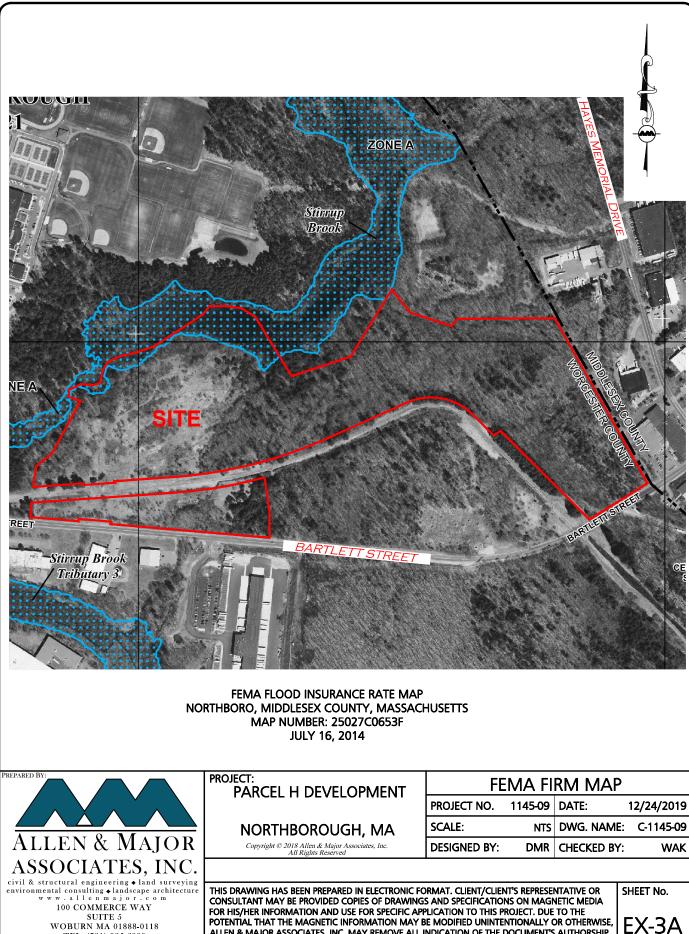
Taylor, Scott M., and Currier, Brian, 1999, A Wet Pond as a Storm Water Runoff BMP – Case Study, presented at Department of Environmental Resources Engineering, Humboldt State University, Arcata, California <u>http://www.owp.csus.edu/research/papers/Pp004.pdf</u> U.S. EPA, 2005, Stormwater Structures and Mosquitoes, EPA 833-F-05-003, http://www.epa.gov/npdes/pubs/sw_wnv.pdf

U.S. EPA, 2003, Do Stormwater Retention Ponds Contribute to Mosquito Problems, Nonpoint source News-Notes, Issue No. 71, <u>http://notes.tetratech-</u>

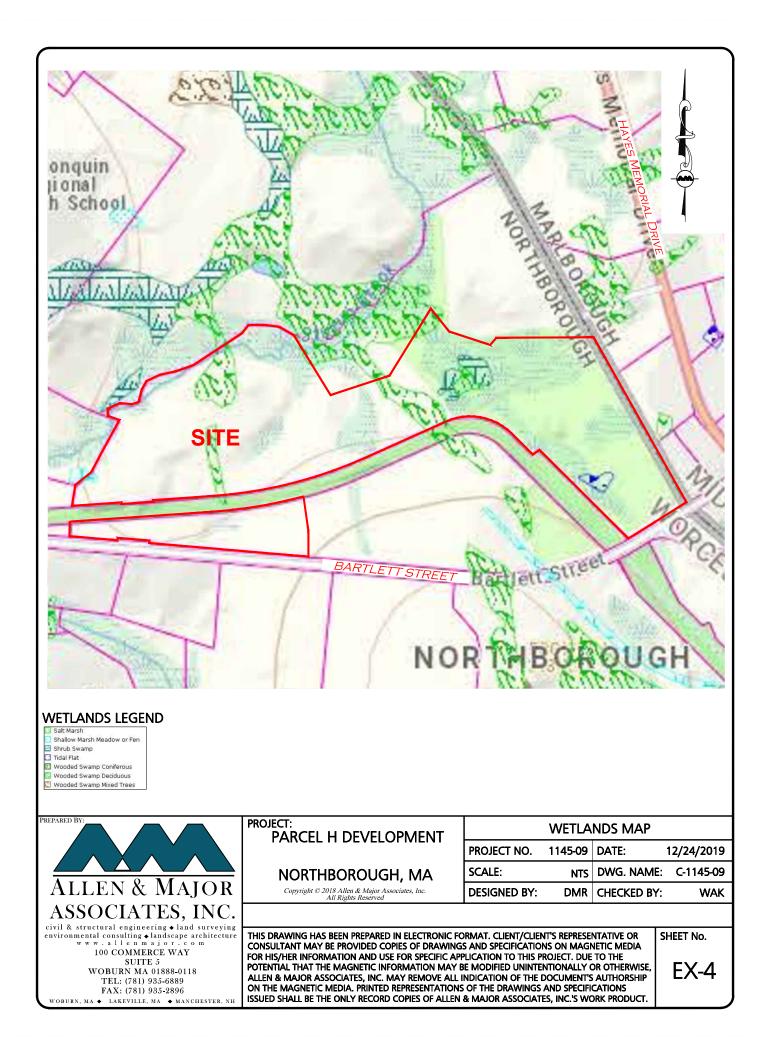
ffx.com/newsnotes.nsf/0/143f7fa99c3ea25485256d0100618bc9?OpenDocument

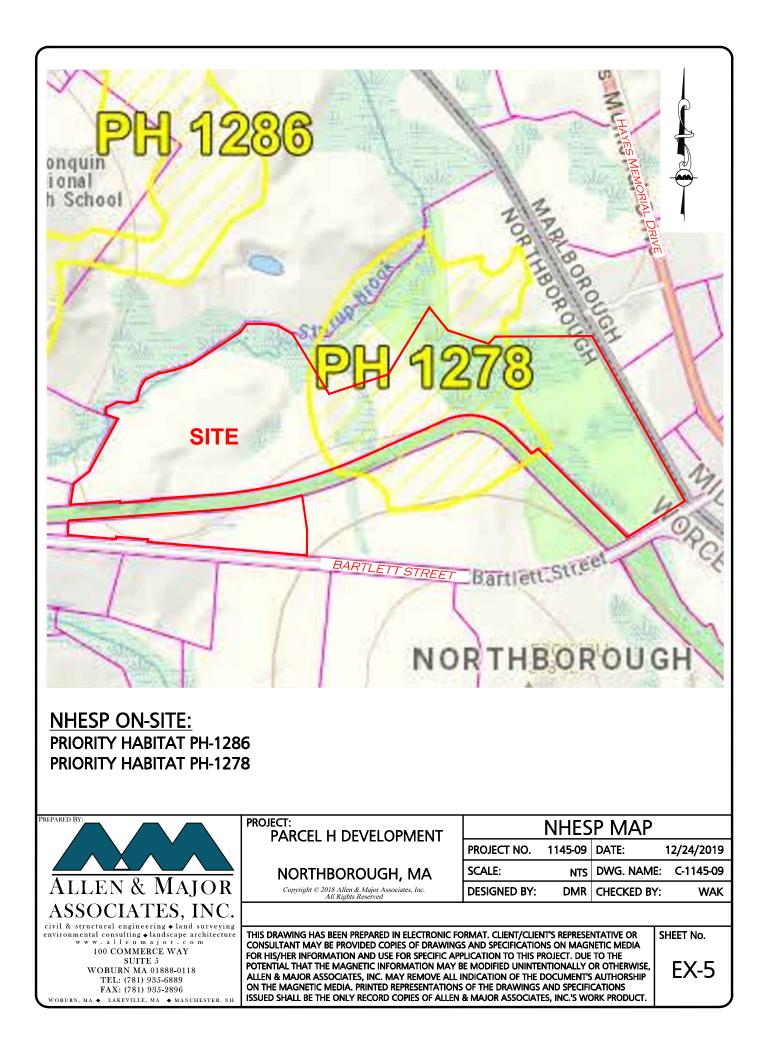

Virginia Department of Conservation and Recreation, 2003, Vector Control, Mosquitoes and Stormwater Management, Stormwater Management Technical Bulletin No. 8, http://www.dcr.virginia.gov/soil & water/documents/tecbltn8.pdf


Wallace, John R., Stormwater Management and Mosquito Ecology, Stormwater Magazine, March/April 2007, <u>http://www.gradingandexcavation.com/sw_0703_management.html</u>


² Bacillus thuringienis israelensis or Bti is usually applied by helicopter to wetlands and floodplains

SECTION 3.0 EXHIBITS

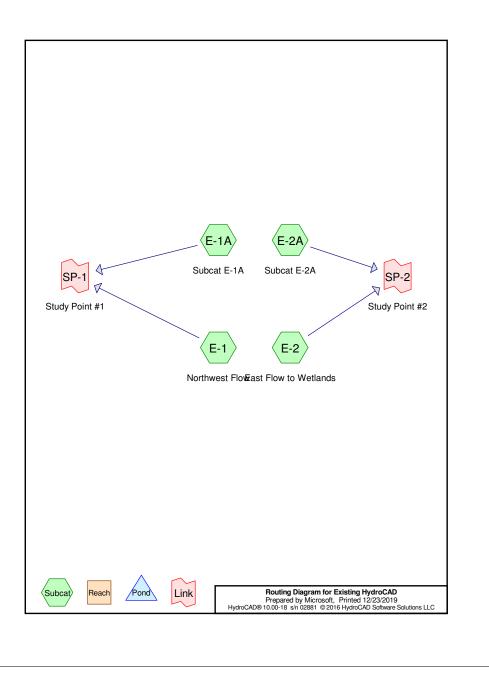



FOR HIS/HER INFORMATION AND USE FOR SPECIFIC APPLICATION TO THIS PROJECT. DUE TO THE POTENTIAL THAT THE MAGNETIC INFORMATION MAY BE MODIFIED UNINTENTIONALLY OR OTHERWISE, ALLEN & MAJOR ASSOCIATES, INC. MAY REMOVE ALL INDICATION OF THE DOCUMENT'S AUTHORSHIP ON THE MAGNETIC MEDIA. PRINTED REPRESENTATIONS OF THE DRAWINGS AND SPECIFICATIONS ISSUED SHALL BE THE ONLY RECORD COPIES OF ALLEN & MAJOR ASSOCIATES, INC.'S WORK PRODUCT.

WOBURN MA 01888-0118

TEL: (781) 935-6889 FAX: (781) 935-2896

WOBURN, MA 🔶 LAKEVILLE, MA 🔶 MANCHESTER, NH



SECTION 4.0 HYDROCAD

EXISTING HYDROCAD

Existing HydroCAD	
Prepared by Microsoft	Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC	Page 2
Area Listing (all pades)	

Area Listing (all nodes)

Area (sq-ft)	CN	Description (subcatchment-numbers)
 295,081	39	>75% Grass cover, Good, HSG A (E-1, E-2, E-2A)
36,047	61	>75% Grass cover, Good, HSG B (E-2A)
424	98	Paved parking, HSG A (E-2)
278,594	30	Woods, Good, HSG A (E-1, E-2, E-2A)
63,960	55	Woods, Good, HSG B (E-1A, E-2A)
674,106	38	TOTAL AREA

Existing	HydroCAD
----------	----------

Prepared by Microsoft HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Printed 12/23/2019 Page 3

Existing Hydro Prepared by Micr HydroCAD® 10.00-	rosoft	2016 HydroCA	D Software Solu	itions LLC		Printed 1	2/23/2019 Page 4
		Groun	d Covers (all	nodes)			
HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	

Soil Listing (all nodes)

Area (sq-ft)	Soil Group	Subcatchment Numbers
574,099	HSG A	E-1, E-2, E-2A
100,007	HSG B	E-1A, E-2A
0	HSG C	
0	HSG D	
0	Other	
674,106		TOTAL AREA

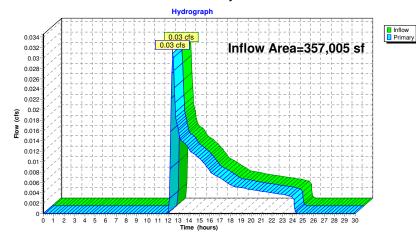
	HSG-A (sq-ft)	HSG-B (sq-ft)	HSG-C (sq-ft)	HSG-D (sq-ft)	Other (sq-ft)	Total (sq-ft)	Ground Cover	Subcatch Numbers
_	295,081	36,047	0	0	0	331,128	>75% Grass cover, Good	
	424	0	0	0	0	424	Paved parking	
	278,594	63,960	0	0	0	342,554	Woods, Good	
	574,099	100,007	0	0	0	674,106	TOTAL AREA	

	5.00	18 s/n 02	Printed 12/23/2019 881 © 2016 HydroCAD Software Solutions LLC Page 5	Prepared by Microsoft HydroCAD® 10.00-18 s/n 02881 © 2016 H
		S	ummary for Subcatchment E-1: Northwest Flow	Summary f
Runoff	=	0.00 cf	s@ 0.00 hrs, Volume= 0 cf, Depth= 0.00"	Runoff = 0.03 cfs @ 12.45
Runoff by Type III 24			nod, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs fall=3.00"	Runoff by SCS TR-20 method, UH=SC Type III 24-hr 2-Year Rainfall=3.00"
	ea (sf)		escription	Area (sf) CN Description
	7,387 9,097		75% Grass cover, Good, HSG A /oods, Good, HSG A	<u>20,521 55 Woods, Good</u> 20,521 100.00% Per
	6,484 6,484		/eighted Average 00.00% Pervious Area	Tc Length Slope Velocity ((min) (feet) (ft/ft) (ft/sec)
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity Capacity Description (ft/sec) (cfs)	10.6 50 0.1200 0.08
8.6	(ieei) 50	0.0180	0.10 Sheet Flow,	0.3 27 0.1000 1.58
1.2	104	0.0440	Grass: Dense n= 0.240 P2= 3.16" 1.47 Shallow Concentrated Flow,	
1.9	216	0.1390	1.86 Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, Woodland Kv= 5.0 fps	Sub
11.7	370	Total	Cubestelement E 1. Netthurset Elsur	0.034
			Subcatchment E-1: Northwest Flow	0.032
1			Type III 24-hr 2-Year Rainfall=3.00" Runoff Area=336,484 sf	0.028 0.024 0.022 (§) 0.02 0.016
(cfs)			Runoff Volume=0 cf	0.014
Flow (c			Runoff Depth=0.00"	0.01
ш.			Flow Length=370' Tc=11.7 min CN=33	
0-		4 5 6	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	
U	1 2 3	4 0 6	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)	

Prep	ared	d by M	roCAE licroso 10-18 s/	ft	881 ©201	6 HydroCAE) Software Sol		Type III 24-i		ainfall=3.00" 1 12/23/2019 Page 6
				S	Summary	/ for Sub	catchment	E-1A: Su	ibcat E-1A		
Runc	off	=	0.0	3 cfs	s@ 12.4	5 hrs, Volu	ime=	333 cf	, Depth= 0.	.19"	
					nod, UH=S fall=3.00"	SCS, Weigl	nted-CN, Tim	e Span= ().00-30.00 hi	rs, dt= 0.05 h	rs
	Ar	ea (sf)	CN	D	escription						
	2	20,521	55			od, HSG B					
	2	20,521		1(00.00% Pe	ervious Are	а				
(m	Tc iin)	Lengtl (feet		ope t/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10	0.6	5	0 0.12	200	0.08		Sheet Flow				
(0.3	2	7 0.10	000	1.58		Woods: De Shallow Co Woodland	oncentrate	d Flow,	.800 P2= 3.1	16"
1(0.9	7	7 Tota	al			VVUUUallu	TV= 5.01	pa		
Flow (cfs)	0.034 0.032 0.03 0.028 0.026 0.024 0.022 0.02 0.018 0.016 0.014 0.012 0.01 0.018 0.019					Hydr	2 Ru Ru	noff A noff V Runof		=3.00" ,521 sf :333 cf =0.19"	Runoff
	0.004 0.002 0	1	2 3 4	5 6	5 7 8 9		14 15 16 17 18 ime (hours)	3 19 20 21 2	22 23 24 25 26	6 27 28 29 30	

	D® 10.00	rosoft 18 s/n 0	2881 ©2016	6 HydroCAD	Printed 12/23/2019 Software Solutions LLC Page 7	HydroCA	ed by Mic D® 10.00	-18 s/n 0	2881 (
		Sun	nmary for	Subcatch	ment E-2: East Flow to Wetlands				Sum
Runoff	=	0.00 c	fs@ 0.00	0 hrs, Volur	ne= 0 cf, Depth= 0.00"	Runoff	=	0.21 c	rfs @
			ethod, UH=S nfall=3.00"	SCS, Weigh	ed-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs		oy SCS T 24-hr 2-`		
	ea (sf)		Description			A	rea (sf)		Descr
10	67,587 424		>75% Grass Paved parki		od, HSG A		108 36.047		>75% >75%
	69,421	30	Woods, Goo	od, HSG A			75	30	Wood
	37,432		Weighted A				43,439		Wood
2	37,008 424		99.82% Per 0.18% Impe				79,669 79,669		Weig 100.0
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	Tc (min)	Length (feet)	Slope (ft/ft	
6.8	<u>(ieet)</u> 50	0.0320		(015)	Sheet Flow,	15.0	50	0.0500	<u> </u>
4.0	314	0.0347	' 1.30		Grass: Dense n= 0.240 P2= 3.16" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps	0.8	36	0.0200)
0.6	48	0.0833	1.44		Shallow Concentrated Flow,	15.8	86	Total	
11.4	412	Total			Woodland Kv= 5.0 fps				
			Subcat	tchment E	-2: East Flow to Wetlands	0.23			+
1-7					Type III 24-hr 2-Year Rainfall=3.00" Runoff Area=237,432 sf Runoff Volume=0 cf Runoff Depth=0.00"	0.22 0.21 0.2 0.19 0.18 0.17 0.16 0.15 0.14 (g 0.13 0.11 0.11 0.01 0.01 0.01 0.01			

Type III 24-hr 2-Year Rainfall=3.00" Printed 12/23/2019 16 HydroCAD Software Solutions LLC Page 8 ry for Subcatchment E-2A: Subcat E-2A .45 hrs, Volume= 1,818 cf, Depth= 0.27" =SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs n ass cover, Good, HSG A ass cover, Good, HSG B Good, HSG A Good, HSG B Average Pervious Area y Capacity Description ;) (cfs) Sheet Flow, Woods: Dense underbrush n= 0.800 P2= 3.16" Shallow Concentrated Flow, Woodland Kv= 5.0 fps Subcatchment E-2A: Subcat E-2A Hydrograph Runoff 0.21 cfs Type III 24-hr 2-Year Rainfall=3.00" Runoff Area=79,669 sf Runoff Volume=1,818 cf Runoff Depth=0.27" Flow Length=86' Tc=15.8 min CN=58 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

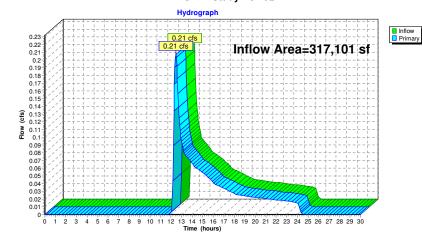

Existing HydroCAD	Type III 24-hr 2-Year Rainfall=3.00"
Prepared by Microsoft	Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC	Page 9

Summary for Link SP-1: Study Point #1

Inflow Area =	357,005 sf, 0.00% Impervious, Inflow Depth = 0.01" for 2-Year event
Inflow =	0.03 cfs @ 12.45 hrs, Volume= 333 cf
Primary =	0.03 cfs @ 12.45 hrs, Volume= 333 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Link SP-1: Study Point #1


Existing HydroCAD	Type III 24-hr 2-Year Rainfall=3.00"
Prepared by Microsoft	Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software So	lutions LLC Page 10

Summary for Link SP-2: Study Point #2

Inflow Area =	317,101 sf,	0.13% Impervious,	Inflow Depth = 0.07"	for 2-Year event
Inflow =	0.21 cfs @ 1	12.45 hrs, Volume=	1,818 cf	
Primary =	0.21 cfs @ 1	12.45 hrs, Volume=	1,818 cf, Atten	= 0%, Lag= 0.0 min

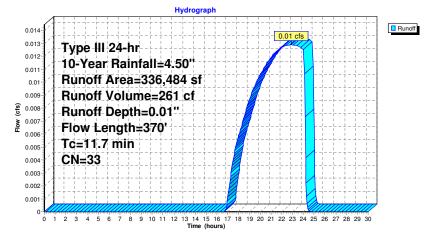
Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Link SP-2: Study Point #2

Existing HydroCAD	Type III 24-hr	10-Year Rainfall=4.50"
Prepared by Microsoft		Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutio	ins LLC	Page 11
		-

Summary for Subcatchment E-1: Northwest Flow

Runoff = 0.01 cfs @ 22.88 hrs, Volume=


88 hrs, Volume= 261 cf, Depth= 0.01"

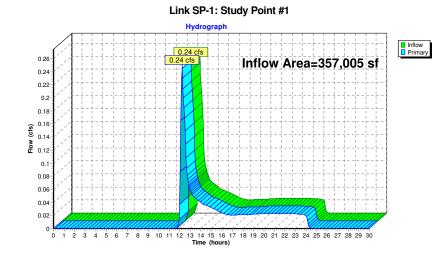
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

A	rea (sf)	CN E	Description		
1	27,387				ood, HSG A
2	09,097	30 V	Voods, Go	od, HSG A	
3	36,484	33 V	Veighted A	verage	
3	36,484	1	00.00% Pe	ervious Area	a
_		.		. .	
Tc	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
8.6	50	0.0180	0.10		Sheet Flow,
					Grass: Dense n= 0.240 P2= 3.16"
1.2	104	0.0440	1.47		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
1.9	216	0.1390	1.86		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
44 7	070	T			

11.7 370 Total

Subcatchment E-1: Northwest Flow

ydroCA		rosoft -18 s/n 02	881 © 201	6 HydroCAD	Software Solutions LLC Printed 12/23/2015
		9	Summary	for Subc	atchment E-1A: Subcat E-1A
unoff	=	0.24 cfs	s@ 12.2	0 hrs, Volur	me= 1,270 cf, Depth= 0.74"
					ted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs
/pe III :	24-hr 10	-Year Rai	nfall=4.50	•	
A	rea (sf)		escription		
	20,521 20,521		,	od, HSG B ervious Area	
	20,521		00.007816		l
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.6	50	0.1200	0.08	(013)	Sheet Flow,
0.0	07	0 1000	1 50		Woods: Dense underbrush n= 0.800 P2= 3.16" Shallow Concentrated Flow,
0.3	27	0.1000	1.58		Woodland Kv= 5.0 fps
10.9	77	Total			· · · · ·
0.26 0.24 0.22 0.2 0.18 0.16 0.14 0.12					Type III 24-hr 10-Year Rainfall=4.50" Runoff Area=20,521 sf Runoff Volume=1,270 cf Runoff Depth=0.74" Flow Length=77 Tc=10.9 min CN=55
0.1 0.08 0.06	 			·	
0.1 0.08 0.06 0.04 0.02					
0.1 0.08 0.06 0.04 0.02 0		3 4 5 6	7 8 9		forefunction from from from from from from from from

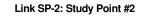

Existing HydroCAD Type III 24-hr 10-Year Rainfall=4.50" repared by Microsoft Printed 12/23/2019 ydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Page 13	Existing HydroCAD Type III 24-hr 10-Year Rainfall=4.50 Prepared by Microsoft Printed 12/23/201 HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Page 1
Summary for Subcatchment E-2: East Flow to Wetlands	Summary for Subcatchment E-2A: Subcat E-2A
unoff = 0.03 cfs @ 15.72 hrs, Volume= 943 cf, Depth= 0.05"	Runoff = 1.15 cfs @ 12.27 hrs, Volume= 6,007 cf, Depth= 0.90"
unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs ype III 24-hr 10-Year Rainfall=4.50"	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"
Area (sf) CN Description	Area (sf) CN Description
167,587 39 >75% Grass cover, Good, HSG A 424 98 Paved parking, HSG A	108 39 >75% Grass cover, Good, HSG A 36,047 61 >75% Grass cover, Good, HSG B
69,421 30 Woods, Good, HSG A 237,432 36 Weighted Average	75 30 Woods, Good, HSG A 43,439 55 Woods, Good, HSG B
237,008 99.82% Pervious Area 424 0.18% Impervious Area	79,669 58 Weighted Average 79,669 100.00% Pervious Area
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.8 50 0.0320 0.12 Sheet Flow, Grass: Dense n= 0.240 P2= 3.16"	15.0 50 0.0500 0.06 Sheet Flow, Woods: Dense underbrush n= 0.800 P2= 3.16"
4.0 314 0.0347 1.30 Shallow Concentrated Flow,	0.8 36 0.0200 0.71 Shallow Concentrated Flow, Woodland Kv= 5.0 fps
Short Grass Pasture Kv= 7.0 fps 0.6 48 0.0833 1.44 Shallow Concentrated Flow,	15.8 86 Total
Woodland Kv= 5.0 fps 11.4 412 Total	Subcatchment E-2A: Subcat E-2A
Subcatchment E-2: East Flow to Wetlands	Hydrograph
Bubcatchillent E-2. East From to Weitahds Hydrograph Image: Bubcatchillent E-2. East From to Weitahds Hydrograph Image: Bubcatchillent E-2. East From to Weitahds Mydrograph Image: Bubcatchillent E-2. East From to Weitahds Image: Bubcatchillent E-2. East Fr	(9) 9) 9) 9) 9) 9) 9) 9) 9) 9)

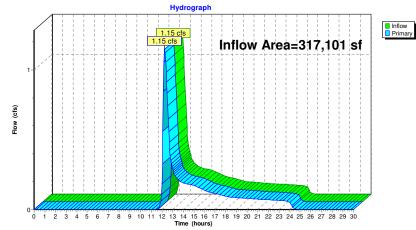
Existing HydroCAD	Type III 24-hr 10-Year Rainfall=4.50"	
Prepared by Microsoft	Printed 12/23/2019	
HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutio	Ins LLC Page 15	

Summary for Link SP-1: Study Point #1

Inflow Area =	357,005 sf, 0	0.00% Impervious,	Inflow Depth = 0.05"	for 10-Year event
Inflow =	0.24 cfs @ 12.2	20 hrs, Volume=	1,531 cf	
Primary =	0.24 cfs @ 12.2	20 hrs, Volume=	1,531 cf, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs




Existing HydroCAD Prepared by Microsoft	Type III 24-hr 10-Year Rainfall=4.50" Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Soft	ware Solutions LLC Page 16
Summary for Link	SP-2: Study Point #2

Summary for Link SP-2: Study Point #2

Inflow Area =	317,101 sf, 0.13% Imperviou	s, Inflow Depth = 0.26"	for 10-Year event
Inflow =	1.15 cfs @ 12.27 hrs, Volume	= 6,950 cf	
Primary =	1.15 cfs @ 12.27 hrs, Volume	 6,950 cf, Atter 	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Existing HydroCAD	Type III 24-hr	100-Year Rainfall=6.50"
Prepared by Microsoft		Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solution	ons LLC	Page 17
		_

Summary for Subcatchment E-1: Northwest Flow

Runoff = 0.34 cfs @ 12.57 hrs, Volume= 7,337 cf, Depth= 0.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.50"

_	A	rea (sf)	CN [Description		
	127,387 39 >75% Grass cover, Goo				s cover, Go	ood, HSG A
	2	09,097	30 \	Noods, Go	od, HSG A	
	3	36,484	33 N	Neighted A	verage	
	3	36,484	1	100.00% Pe	ervious Area	a
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)		(cfs)	
	8.6	50	0.0180	0.10		Sheet Flow,
						Grass: Dense n= 0.240 P2= 3.16"
	1.2	104	0.0440	1.47		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	1.9	216	0.1390	1.86		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	44 7	070	Tatal			

11.7 370 Total

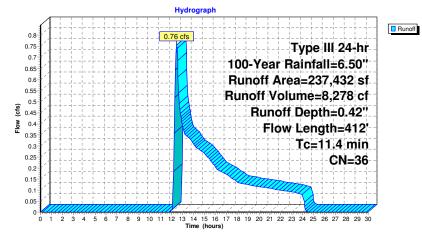
Subcatchment E-1: Northwest Flow

Existing Hydro Prepared by Mic HydroCAD® 10.00-	rosoft	Type III 24-hr 100-Year Rainfall=6.50" Printed 12/23/2019 6 HydroCAD Software Solutions LLC Page 18
	Summary	y for Subcatchment E-1A: Subcat E-1A
Runoff =	0.77 cfs @ 12.1	7 hrs, Volume= 3,101 cf, Depth= 1.81"
Runoff by SCS TF Type III 24-hr 100	R-20 method, UH=8)-Year Rainfall=6.5	SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs 0"
Area (sf)	CN Description	1
20,521	55 Woods, Go	ood, HSG B
20,521	100.00% Pe	ervious Area
Tc Length (min) (feet)	Slope Velocity (ft/ft) (ft/sec)	Capacity Description (cfs)
10.6 50	0.1200 0.08	Sheet Flow,
0.3 27	0.1000 1.58	Woods: Dense underbrush n= 0.800 P2= 3.16" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
10.9 77	Total	
0.85 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5		Ubcatchment E-1A: Subcat E-1A Hydrograph 0.77 cfs 100-Year Rainfall=6.50' Runoff Area=20,521 sf Runoff Volume=3,101 cf Runoff Depth=1.81' Flow Length=77' Tc=10.9 min CN=55 101 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

Existing HydroCAD	Type III 24-hr	100-Year Rainfall=6.50"
Prepared by Microsoft		Printed 12/23/2019
HvdroCAD® 10.00-18 s/n 02881 © 2016 HvdroCAD Software Solutions	LLC	Page 19

Summary for Subcatchment E-2: East Flow to Wetlands

Runoff = 0.76 cfs @ 12.46 hrs, Volume= 8,2

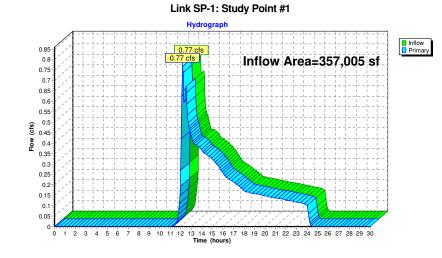

blume= 8,278 cf, Depth= 0.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.50"

A	rea (sf)	CN D	escription		
167,587 39 >75% Grass cover, Good, HSG A					
424 98 Paved parking, HSG A					
	69,421	30 V	Voods, Go	od, HSG A	
2	37,432	36 V	Veighted A	verage	
2	37,008	9	9.82% Per	vious Area	
	424	0	.18% Impe	ervious Area	а
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.8	50	0.0320	0.12		Sheet Flow,
					Grass: Dense n= 0.240 P2= 3.16"
4.0	314	0.0347	1.30		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.6	48	0.0833	1.44		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps

11.4 412 Total

Subcatchment E-2: East Flow to Wetlands

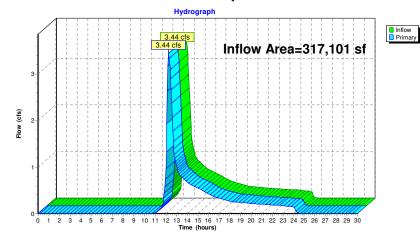

Prepare	g Hydro d by Mic D® 10.00-	rosoft	016 HydroCAE	Type III 24-hr 100-Year Ra Printed D Software Solutions LLC	ainfall=6.50" 12/23/2019 Page 20
		Summa	ry for Sub	catchment E-2A: Subcat E-2A	
Runoff	=	3.07 cfs @ 12	.24 hrs, Volu	ume= 13,782 cf, Depth= 2.08"	
		R-20 method, UH 0-Year Rainfall=6		hted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hr	S
A	rea (sf)	CN Descripti	on		
	108 36,047	61 >75% Gr	ass cover, Go ass cover, Go	bod, HSG B	
	75 43,439		Good, HSG A Good, HSG B		
	79,669 79,669		l Average Pervious Are	a	
Tc (min)	Length (feet)	Slope Velocit (ft/ft) (ft/sec		Description	
15.0	50	0.0500 0.0		Sheet Flow,	
0.8	36	0.0200 0.7	1	Woods: Dense underbrush n= 0.800 P2= 3.1 Shallow Concentrated Flow, Woodland Kv= 5.0 fps	6"
15.8	86	Total			
				rograph	
1			3.07 cfs		Runoff
3- - -				Type III 24-hr 100-Year Rainfall=6.50" Runoff Area=79,669 sf Runoff Volume=13,782 cf	
-2 - - 1-				Runoff Depth=2.08" Flow Length=86' Tc=15.8 min CN=58	
 - - - 0					
) 1 2 3	4 5 6 7 8 9		4 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 me (hours)	

Existing HydroCAD	Type III 24-hr	100-Year Rainfall=6.50"
Prepared by Microsoft		Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions	LLC	Page 21

Summary for Link SP-1: Study Point #1

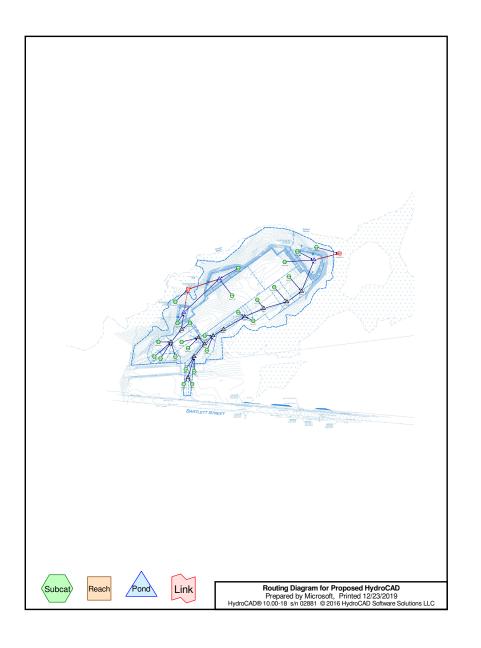
Inflow Area =	357,005 sf, 0.00% Impervious, Inflow Depth = 0.35" for 100-Year	event
Inflow =	0.77 cfs @ 12.17 hrs, Volume= 10,438 cf	
Primary =	0.77 cfs @ 12.17 hrs, Volume= 10,438 cf, Atten= 0%, Lag= 0	.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Existing HydroCAD	Type III 24-hr 100-Year Rainfall=6.50"
Prepared by Microsoft	Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software S	olutions LLC Page 22

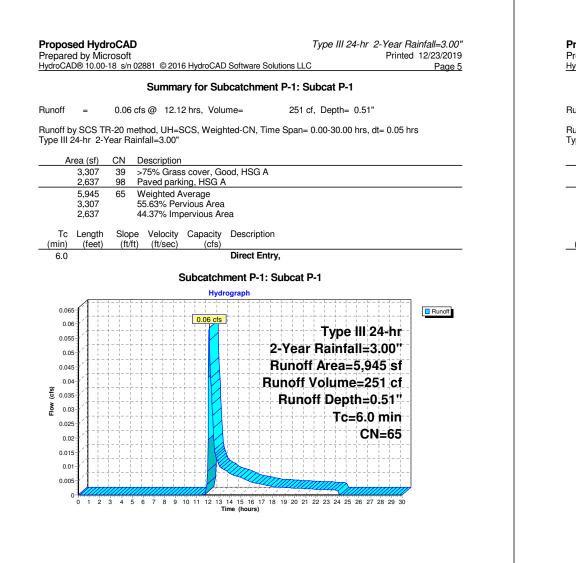
Summary for Link SP-2: Study Point #2

Inflow Area =	317,101 sf, (0.13% Impervious,	Inflow Depth = 0.83"	for 100-Year event
Inflow =	3.44 cfs @ 12	2.27 hrs, Volume=	22,060 cf	
Primary =	3.44 cfs @ 12	2.27 hrs, Volume=	22,060 cf, Atten	= 0%, Lag= 0.0 min


Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

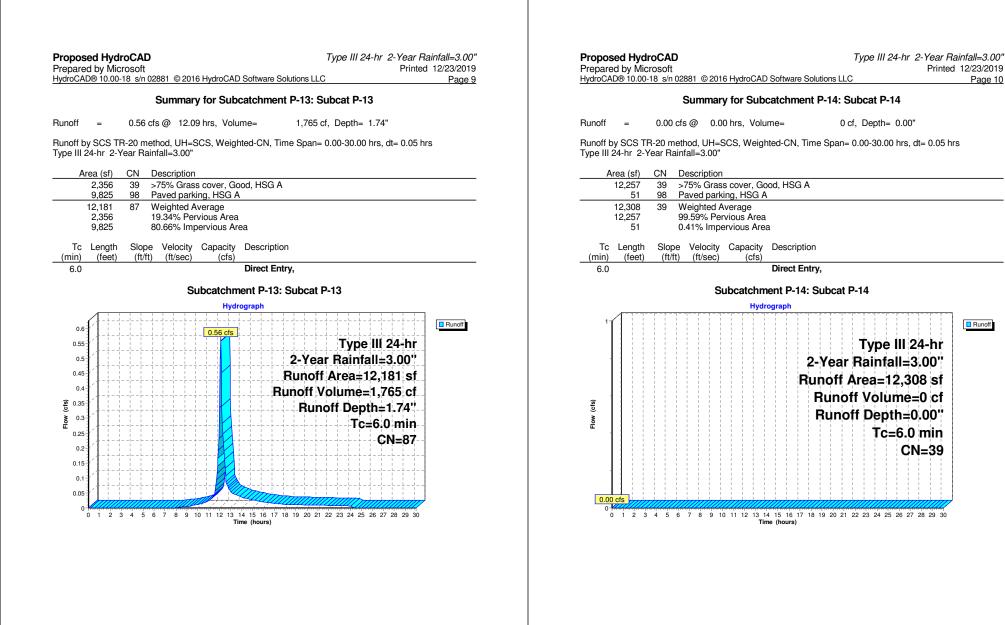
Link SP-2: Study Point #2

PROPOSED HYDROCAD



Proposed HydroCAD	
Prepared by Microsoft	Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC	Page 2

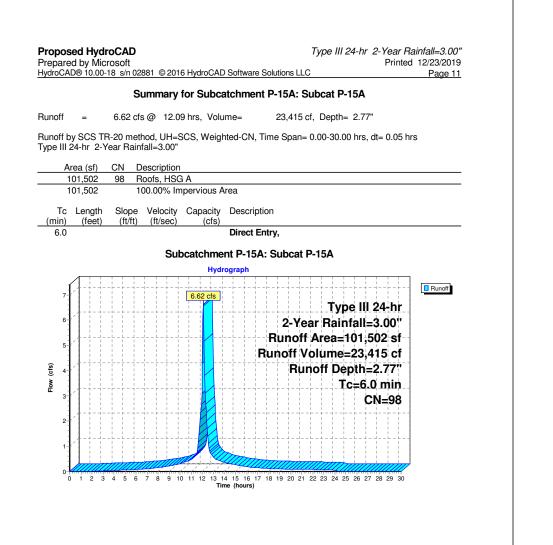
Area Listing (all nodes)

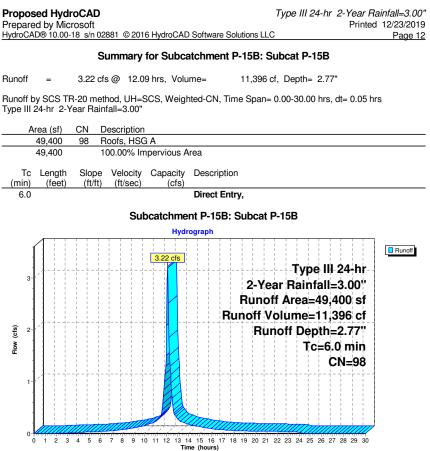

Area (sq-ft)	CN	Description (subcatchment-numbers)
171,274	39	>75% Grass cover, Good, HSG A (P-1, P-10, P-11, P-12, P-13, P-14, P-16, P-17, P-18, P-2, P-22, P-23, P-24, P-25, P-3, P-4, P-5, P-7, P-8, P-9)
46,745	61	>75% Grass cover, Good, HSG B (P-16, P-18, P-23, P-5)
152,817	98	Paved parking, HSG A (P-1, P-10, P-12, P-13, P-14, P-16, P-19, P-2, P-20, P-21, P-22, P-23, P-24, P-25, P-3, P-4, P-5, P-7, P-8, P-9)
1,030	98	Paved parking, HSG B (P-16, P-19)
150,902	98	Roofs, HSG A (P-15A, P-15B)
99,106	30	Woods, Good, HSG A (P-11, P-18, P-5)
52,232	55	Woods, Good, HSG B (P-11, P-18)
674,106	67	TOTAL AREA

Proposed HydroCAD Prepared by Microsoft Printed 12/23/2019 HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Page 3		Proposed Hydr Prepared by Mic HydroCAD® 10.00-		Printed 12/23/2019 Page 4						
		Soil Listing (all nodes)			Groun	d Covers (all	nodes)			
Area	Soil	Subcatchment	HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatcł
(sq-ft)	Group	Numbers	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	Cover	Numbers
574,099	HSG A	P-1, P-10, P-11, P-12, P-13, P-14, P-15A, P-15B, P-16, P-17, P-18, P-19, P-2, P-20, P-21, P-22, P-23, P-24, P-25, P-3, P-4, P-5, P-7, P-8, P-9	171,274	46,745	0	0	0	218,019	>75% Grass cover, Good	
100,007	HSG B	P-11, P-16, P-18, P-19, P-23, P-5	152,817	1,030	0	0	0	153,848	Paved parking	
0	HSG C		150,902	0	0	0	0	150,902	Roofs	
0	HSG D		99,106	52,232	0	0	0	151,337	Woods, Good	
0	Other		574,099	100,007	0	0	0	674,106	TOTAL AREA	
674,106		TOTAL AREA								

Summary for Subcatchment P-10: Subcat P-10
Runoff = 0.31 cfs @ 12.10 hrs, Volume= 1,016 cf, Depth= 1.02"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs [vpe III 24-hr 2-Year Rainfall=3.00"
Area (sf) CN Description
4,394 39 >75% Grass cover, Good, HSG A 7,616 98 Paved parking, HSG A
12,010 76 Weighted Average 4,394 36.58% Pervious Area
7,616 63.42% Impervious Area
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry,
Subcatchment P-10: Subcat P-10 Hydrograph 100 100 100 100 100 100 100 10

oposed HydroCAD Type III 24-hr 2-Year Rainfall=3.00" epared by Microsoft Printed 12/23/2019 droCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Page 7	Proposed HydroCAD Type III 24-hr 2-Year Rainfall=3.00 Prepared by Microsoft Printed 12/23/201 HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Page
Summary for Subcatchment P-11: Subcat P-11	Summary for Subcatchment P-12: Subcat P-12
inoff = 0.00 cfs @ 0.00 hrs, Volume= 0 cf, Depth= 0.00" inoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs pe III 24-hr 2-Year Rainfall=3.00" Area (sf) CN Description 35,319 39 >75% Grass cover, Good, HSG A 93,727 30 Woods, Good, HSG A	Runoff = 0.98 cfs @ 12.09 hrs, Volume= 3,285 cf, Depth= 2.45" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00" Area (sf) CN Description 949 39 >75% Grass cover, Good, HSG A 15,146 98 Paved parking, HSG A
20,521 55 Woods, Good, HSG B 149,568 36 Weighted Average 149,568 100.00% Pervious Area Tc Length Slope Velocity Capacity Description	16,095 95 Weighted Average 949 5.90% Pervious Area 15,146 94.10% Impervious Area Tc Length Slope Velocity Capacity Description
min) (feet) (ft/sec) (cfs) 8.6 50 0.2000 0.10 Sheet Flow,	(min) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry,
Woods: Dense underbrush n= 0.800 P2= 3.16" 0.5 72 0.2000 2.24 Shallow Concentrated Flow,	Subcatchment P-12: Subcat P-12
Woodland Kv= 5.0 fps 9.1 122 Total	
Subcatchment P-11: Subcat P-11 Hydrograph Type III 24-hr 2-Year Rainfall=3.00" Runoff Area=149,568 sf Runoff Volume=0 cf Runoff Depth=0.00" Flow Length=122' Slope=0.2000 '/' Tc=9.1 min CN=36	(9) (9) (9) (9) (9) (9) (9) (9)

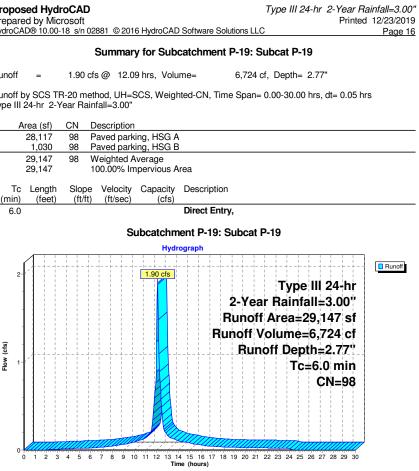


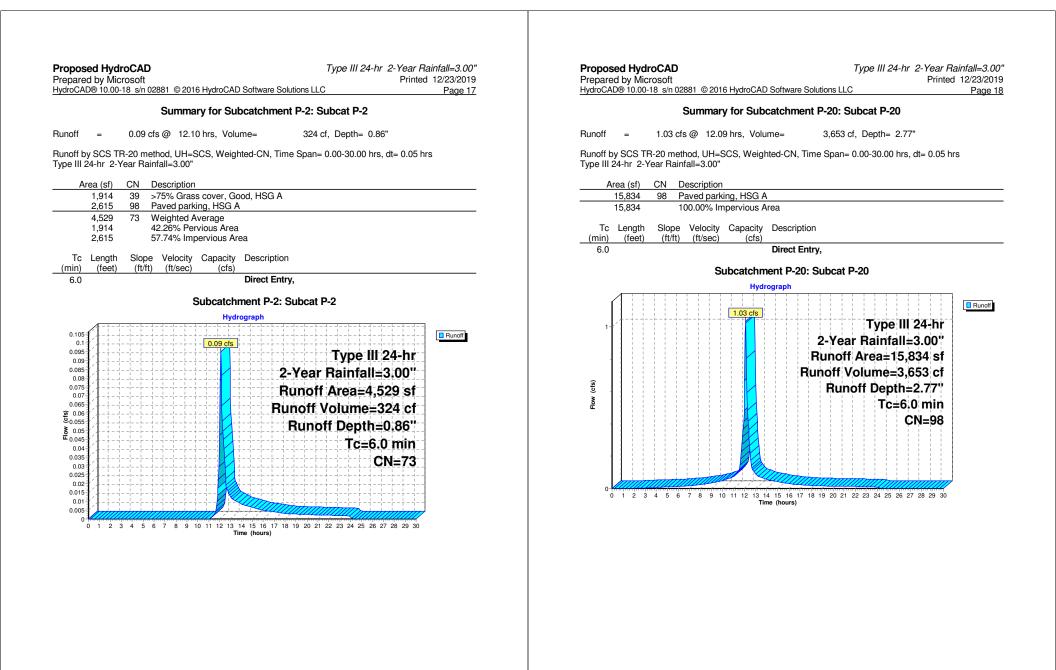

Printed 12/23/2019

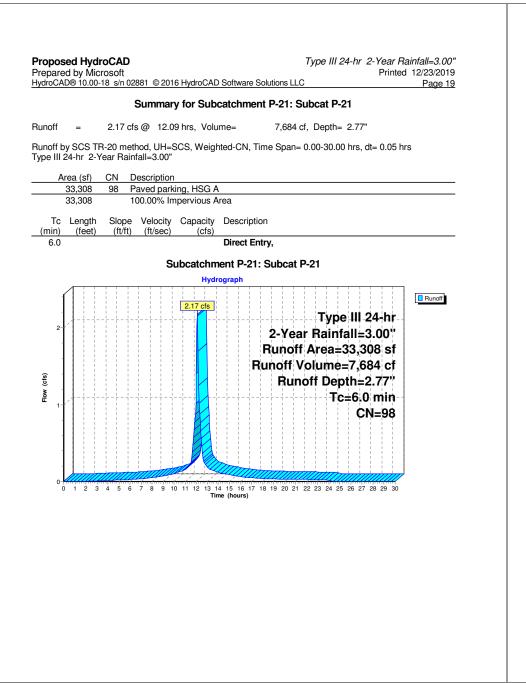
Page 10

Runoff

CN=39






Type III 24-hr 2-Year Rainfall=3.00"

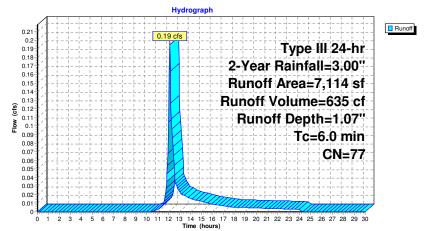
sed HydroCAD Type III 24-hr 2-Year Rainfall=3.00" ed by Microsoft Printed 12/23/2019 AD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Page 13	Proposed HydroCAD Type III 24-hr 2-Year Rainfall=3. Prepared by Microsoft Printed 12/23/20 HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Page
Summary for Subcatchment P-16: Subcat P-16	Summary for Subcatchment P-17: Subcat P-17
= 0.00 cfs @ 0.00 hrs, Volume= 0 cf, Depth= 0.00"	Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0 cf, Depth= 0.00"
by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs 24-hr 2-Year Rainfall=3.00"	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"
Area (sf) CN Description	Area (sf) CN Description
31,821 39 >75% Grass cover, Good, HSG A 472 61 >75% Grass cover, Good, HSG B	23,320 39 >75% Grass cover, Good, HSG A 23.320 100.00% Pervious Area
99 98 Paved parking, HSG A	
1 98 Paved parking, HSG B 32,392 40 Weighted Average	Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
32,292 99.69% Pervious Area 100 0.31% Impervious Area	6.0 Direct Entry,
: Length Slope Velocity Capacity Description	Subcatchment P-17: Subcat P-17
(feet) (ft/ft) (ft/sec) (cfs)	Hydrograph
Direct Entry,	
Subcatchment P-16: Subcat P-16	Type III 24-hr
Hydrograph	2-Year Rainfall=3.00"
	Runoff Area=23,320 sf
Type III 24-hr	Runoff Volume=0 cf
2-Year Rainfall=3.00"	Bunoff Depth=0.00"
Runoff Area=32,392 sf	Tc=6.0 min
Runoff Volume=0 cf	CN=39
Runoff Depth=0.00"	CIN=59
Tc=6.0 min	
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	
CN=40	0.00 cls 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
	Time (hours)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)	

	by Micro: 8 10.00-18		2881 © 201	6 HydroCA	O Software	Solutior	ns LLC		Prii		/23/2019 Page 15			ed by Mi D® 10.00		02881 © 2	2016 Hyc
			Summar	y for Sub	catchme	ent P-1	8: Sub	cat P-1	8							Summ	nary for
Runoff	= ().08 c	fs @ 12.5	2 hrs, Vol	ume=	1,	268 cf, I	Depth=	0.15"				Runoff	=	1.90	cfs @ 12	2.09 hrs
Runoff by Type III 24				SCS, Weig	hted-CN,	Time S	pan= 0.0	0-30.00	hrs, dt= 0.0	15 hrs						nethod, UH ainfall=3.0	
Are	ea (sf) C	N	Description										A	vrea (sf)	CN	Descripti	ion
2	3,317 3	39	>75% Gras	s cover, G										28,117	98	Paved pa	arking, I
			>75% Gras Noods, Go			В								1,030	98	Paved pa	- 0/
			Noods, Go Noods, Go											29,147 29,147	98	Weighte 100.00%	
10	2,115	53	Neighted A	verage										20,117			
10	2,115		100.00% Pe	ervious Are	ea								Tc (min)	Length (feet)		be Veloci ft) (ft/se	ity Cap
Tc	Length	Slope	Velocity	Capacity	Descript	tion							6.0	(ieel)	(101	<u>i) (1756</u>	<u>()</u>
(min)	(feet)	(ft/ft)	· · · /	(cfs)													
11.4	50 0	.1000	0.07		Sheet F		underbri	uch n-	0.800 P2=	- 3 16"							Subca
0.8	70 0	.0800	1.41				entrated		0.000 12-	- 5.10							
					Woodla	nd Kv:	= 5.0 fps	;						<u> </u>		++-+	
12.2	120 T	otal											2-				1.9
0.08 0.085 0.075 0.075 0.065 0.055 0.055 0.045 0.045 0.045 0.045 0.045						Runo Runo	Year F off Ard off Vol Runof	Rainfa ea=10 ume= f Dept v Leng	III 24-h III=3.00 12,115 s 1,268 c th=0.15 gth=120 12.2 min		Runoff		-1 Flow (cts)			6 7 8 5	
0.025 0.02 0.015 0.015 0.005		4 5			14 15 16 1 Fime (hours)		20 21 22	23 24 25	26 27 28 29						, -, J		

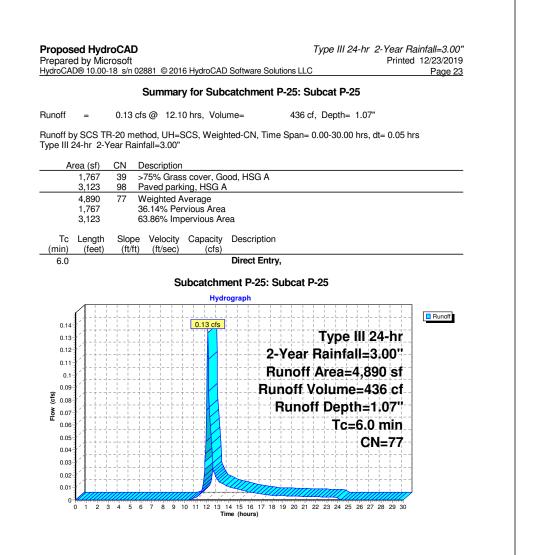
epare	ed Hydr d by Mici D® 10.00-	rosoft		016 Hydro	CAD So	ftware	Solution	ns LLC			Printed	12/23/2019 Page 20
			Summ	ary for S	ubcat	chme	nt P-2	22: Sub	cat P-2	2		
Inoff	=	0.19	cfs @ 12	2.11 hrs, \	/olume	=		764 cf, [Depth=	0.54"		
			ethod, UH ainfall=3.0	I=SCS, W 0"	eightec	I-CN, T	īme S	pan= 0.0	0-30.00	hrs, dt=	0.05 hr	S
Ar	ea (sf)	CN	Descripti									
	9,035 7,796	39 98		ass cover arking, HS		HSG	4					
	16,831 9,035 7,796	66	Weighte 53.68%	d Average Pervious A mpervious	rea							
Tc (min)	Length (feet)	Slop (ft/f			city Do fs)	escripti	on					
6.0					Di	irect Er	ntry,					
0.2 0.1914 0.18 0.17 0.16 0.14 0.13 0.12 0.11 0.14 0.05 0.01 0.08 0.07 0.06 0.08 0.07 0.06 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.04					1ydrogr: - - - -		lunc lunc	ar R off Arr off Vo inoff	ea=16 lume Deptl	ll=3.(5,831 =764	00" sf cf 54" nin	Runoff
0	0 1 2 3	4 5	678	9 10 11 12		5 16 17 hours)	18 19	20 21 22	23 24 25	26 27 28	29 30	

Proposed HydroCAD	Type III 24-hr 2-Year Rainfall=3.00"
Prepared by Microsoft	Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC	Page 21

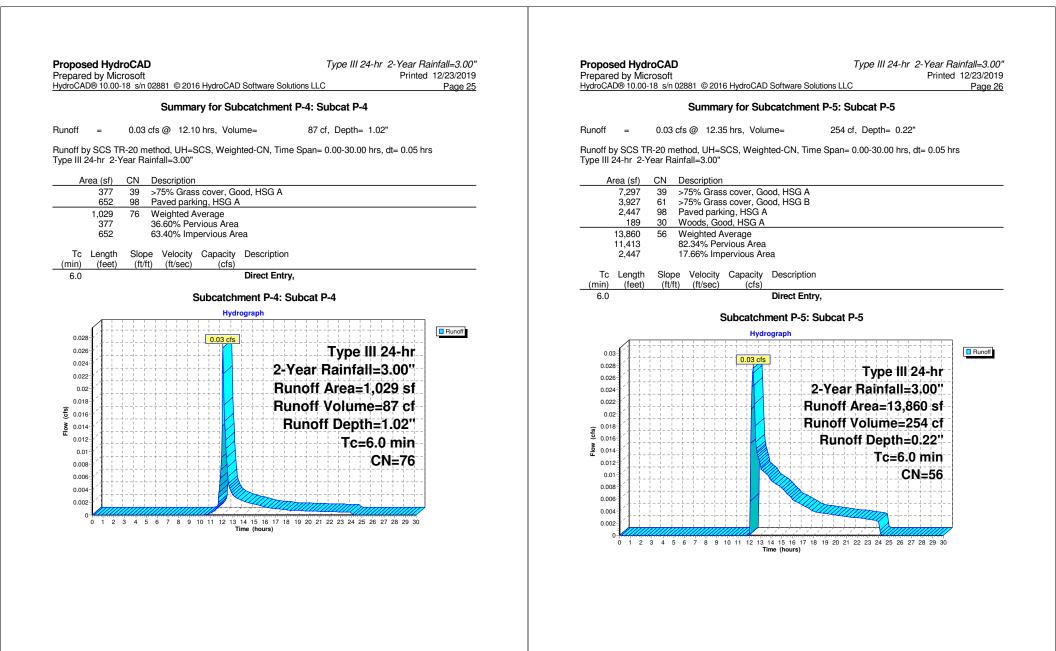
Summary for Subcatchment P-23: Subcat P-23

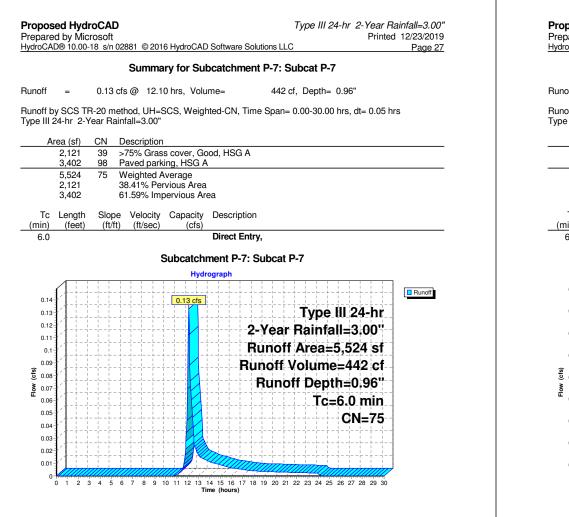

Runoff = 0.19 cfs @ 12.10 hrs, Volume=

10 hrs, Volume= 635 cf, Depth= 1.07"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"

A	rea (sf)	CN	Description							
	2,239	39	>75% Gras	s cover, Go	lood, HSG A					
	448	61	>75% Gras	s cover, Go	lood, HSG B					
	4,427	98	Paved park	aved parking, HSG A						
	7,114 2,687 4,427	77 Weighted Average 37.77% Pervious Area 62.23% Impervious Area								
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)						
6.0					Direct Entry,					


Subcatchment P-23: Subcat P-23



Proposed HydroCAD Type III 24-hr 2-Year Rainfall=3. Prepared by Microsoft Printed 12/23/2 HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Page	019
Summary for Subcatchment P-24: Subcat P-24	
Runoff = 0.49 cfs @ 12.10 hrs, Volume= 1,580 cf, Depth= 1.19"	
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.00"	
Area (sf) CN Description	
5,144 39 >75% Grass cover, Good, HSG A 10,810 98 Paved parking, HSG A	
15,954 79 Weighted Average	_
5,144 32.24% Pervious Area 10,810 67.76% Impervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry,	—
Subcatchment P-24: Subcat P-24	
	n.
	1
^{0.45} 2-Year Rainfall=3.00 "	
⁰⁴ Runoff Area±15,954 sf	
^{0.35} Runoff Volume=1,580 cf	
≝ ₀₃-	
₽ 0.25 Tc=6.0 min	
0.2	
0.15	
Time (hours)	

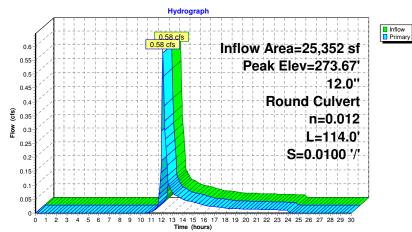
Proposed HydroCAD Prepared by Microsoft HydroCAD® 10.00-18 s/n 02881 © 201	Type III 24-hr 2-Year Rainfall=3.00" Printed 12/23/2019 6 HydroCAD Software Solutions LLC Page 24
Summa	ry for Subcatchment P-3: Subcat P-3
Runoff = 0.02 cfs @ 12.1	1 hrs, Volume= 70 cf, Depth= 0.58"
Runoff by SCS TR-20 method, UH=S Type III 24-hr 2-Year Rainfall=3.00"	SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs
Area (sf) CN Description	
	s cover, Good, HSG A ing, HSG A
1,434 67 Weighted A 742 51.75% Per	vious Area
692 48.25% Imp Tc Length Slope Velocity	pervious Area Capacity Description
(min) (feet) (ft/ft) (ft/sec) 6.0	(cfs) Direct Entry,
0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.012 0.014 0.013 0.012 0.014 0.013 0.012 0.014 0.015 0.014 0.010 0.005	Subcatchment P-3: Subcat P-3 Hydrograph Under State P-3 Output of the state of the s

Proposed HydroCAD repared by Microsoft ydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solution	Type III 24-hr 2-Year Rainfall=3.00" Printed 12/23/2019 ns LLC Page 28
Summary for Subcatchment P-	-8: Subcat P-8
unoff = 0.08 cfs @ 12.10 hrs, Volume=	268 cf, Depth= 0.76"
unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Sp ype III 24-hr 2-Year Rainfall=3.00"	pan= 0.00-30.00 hrs, dt= 0.05 hrs
Area (sf) CN Description	
1,911 39 >75% Grass cover, Good, HSG A 2,318 98 Paved parking, HSG A	
4,229 71 Weighted Average	
1,911 45.19% Pervious Area 2,318 54.81% Impervious Area	
Tc Length Slope Velocity Capacity Description	
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry,	
6.0 Direct Entry,	
Subcatchment P-8: Sub	cat P-8
Hydrograph	
0.06 0.055 @ 0.05	Type III 24-hr ear Rainfall=3.00" noff Area=4,229 sf off Volume=268 cf unoff Depth=0.76" Tc=6.0 min CN=71
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Time (hours)	20 21 22 23 24 25 26 27 28 29 30

Proposed HydroCAD Type III 24-hr 2-Year Rainfall=3 Prepared by Microsoft Printed 12/23/2 Printed 12/23/2 HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Page	2019 Prepared by Microsoft Printed 12/23/201
Summary for Subcatchment P-9: Subcat P-9	Summary for Pond DMH1: DMH1
unoff = 0.06 cfs @ 12.11 hrs, Volume= 214 cf, Depth= 0.71" unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs pe III 24-hr 2-Year Rainfall=3.00" 4.00 4.00 Area (sf) CN Description 1.687 39 >75% Grass cover, Good, HSG A 1.901 98 Paved parking, HSG A 4.00 4.00 4.00	Inflow Area = 10,474 sf, 50.15% Impervious, Inflow Depth = 0.66" for 2-Year event Inflow = 0.15 cfs @ 12.11 hrs, Volume= 574 cf Outflow = 0.15 cfs @ 12.11 hrs, Volume= 574 cf, Atten= 0%, Lag= 0.0 min Primary = 0.15 cfs @ 12.11 hrs, Volume= 574 cf Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 283.71' @ 12.11 hrs Flood Elev= 287.50' 12.11 hrs Flood Elev= 287.50' 12.11 hrs
3,588 70 Weighted Average 1,687 47.01% Pervious Area 1,901 52.99% Impervious Area Tc Length Slope Velocity Capacity Description min) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry,	Device Routing Invert Outlet Devices #1 Primary 283.50' 12.0'' Round Culvert L= 111.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 283.50' / 280.17' S= 0.0300 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf Primary OutFlow Max=0.15 cfs @ 12.11 hrs HW=283.71' (Free Discharge) 1=Culvert (Inlet Controls 0.15 cfs @ 1.23 fps)
Subcatchment P-9: Subcat P-9 Hydrograph	Pond DMH1: DMH1
0.065 0.06 cts Type III 24-hr 0.055 0.056 2-Year Rainfall=3.00" 0.045 Runoff Area=3,588 sf 0.045 Runoff Depth=0.71" 0.056 Tc=6.0 min 0.056 CN=70 0.056 0.025 0.025 0.026 0.025 0.026 0.025 0.026 0.025 0.026 0.025 0.026 0.025 0.026 0.025 0.026 0.025 0.026 0.025 0.026 0.025 0.026 0.025 0.026 0.025 0.026 0.025 0.026 0.025 0.026 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.027 0.027 0.026 0.027 0.027 0.027 0.028 0.027 0.029	Hydrograph Prince Hydrograph Peak Elev=283.71! 12.0' 12.3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 The (hours)

Proposed HydroCAD	-	Type III 24-hr 2-Year Rainfall=3.00"
Prepared by Microsoft		Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881	© 2016 HydroCAD Software Solutions LLC	Page 31

Summary for Pond DMH10: DMH10

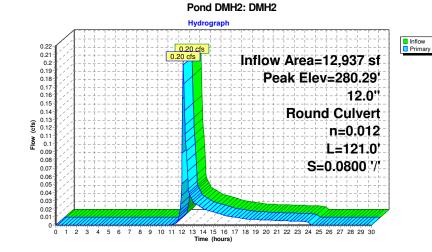

Inflow Area =	25,352 sf, 60.11% Impervious, Inflow Depth = 0.92" for 2-Year event
Inflow =	0.58 cfs @ 12.10 hrs, Volume= 1,940 cf
Outflow =	0.58 cfs @ 12.10 hrs, Volume= 1,940 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.58 cfs @ 12.10 hrs, Volume= 1,940 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 273.67' @ 12.10 hrs Flood Elev= 278.08'

Device	Routing	Invert	Outlet Devices
#1	Primary	273.24'	12.0" Round Culvert
			L= 114.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 273.24' / 272.10' S= 0.0100 '/ Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.57 cfs @ 12.10 hrs HW=273.67' (Free Discharge) 1=Culvert (Inlet Controls 0.57 cfs @ 1.77 fps)

Pond DMH10: DMH10



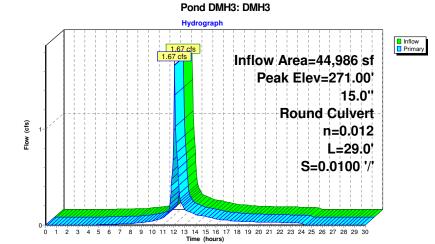
Proposed Hyd Prepared by Mic HydroCAD® 10.00		Type III 24-hr 2-Year Rainfall=3.00" Printed 12/23/2019 ions LLC Page 32				
	Summary for Pond DMH2: DMH2					
Inflow Area = Inflow = Outflow = Primary =	12,937 sf, 50.99% Impervious, Inflow E 0.20 cfs @ 12.11 hrs, Volume= 0.20 cfs @ 12.11 hrs, Volume= 0.20 cfs @ 12.11 hrs, Volume=	Depth = 0.68" for 2-Year event 731 cf 731 cf, Atten= 0%, Lag= 0.0 min 731 cf				

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 280.29' @ 12.11 hrs Flood Elev= 284.16'

Device	Routing	Invert	Outlet Devices
#1	Primary	280.05'	12.0" Round Culvert
			L= 121.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 280.05' / 270.37' S= 0.0800 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior. Flow Area= 0.79 sf

Primary OutFlow Max=0.19 cfs @ 12.11 hrs HW=280.29' (Free Discharge) 1=Culvert (Inlet Controls 0.19 cfs @ 1.32 fps)

Proposed HydroCAD	-	Type III 24-hr 2-Year Rainfall=3.00"
Prepared by Microsoft		Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 ©	2016 HydroCAD Software Solutions LLC	Page 33


Summary for Pond DMH3: DMH3

Inflow Area =	44,986 sf, 72.36% Impervious, Inflow Depth = 1.49" for 2-Year event	
Inflow =	1.67 cfs @ 12.09 hrs, Volume= 5,597 cf	
Outflow =	1.67 cfs @ 12.09 hrs, Volume= 5,597 cf, Atten= 0%, Lag= 0.0 min	
Primary =	1.67 cfs @ 12.09 hrs, Volume= 5,597 cf	

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 271.00' @ 12.09 hrs Flood Elev= 276.00'

Device Routing Invert Outlet Devices	
#1 Primary 270.28' 15.0'' Round Culvert L= 29.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 270.28' / 269.99' S= 0.0100 '/ Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.23 sf	_

Primary OutFlow Max=1.64 cfs @ 12.09 hrs HW=270.99' (Free Discharge) 1=Culvert (Inlet Controls 1.64 cfs @ 2.27 fps)

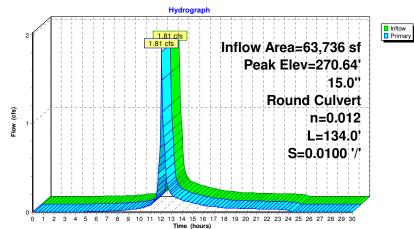
	ed by Microsoft D® 10.00-18 s/r		2016 HydroCAD S	Software So	utions L1 C	;	Print	Page 3
<u>I Iyaroo</u> r	10.00 10 01							l age o
			Summary fo	r Pona D	VIN4: DI	/104		
Inflow A			80.99% Impervie				2-Year eve	nt
Inflow Outflow			2.09 hrs, Volum 2.09 hrs, Volum		4,865 c		%, Lag= 0.0	min
Primary			2.09 hrs, Volum		4,865 c		,o, 149 0.0	
Routing	by Stor-Ind me	thod, Time	e Span= 0.00-30	.00 hrs, dt=	0.05 hrs			
Peak El	ev= 271.37' @ '		-					
	ev= 275.50'							
Device	3	Invert						
#1	Primary	270.62'	12.0" Round	Culvert				
) projecting	no hoo	hual Ka I	<u> </u>	
			L= 25.0' CPF Inlet / Outlet Ir).900
				nvert= 270.	62' / 270.3	37' S= 0.01	00 '/' Cc= 0	
Primarv	OutFlow Max	=1.44 cfs @	Inlet / Outlet In n= 0.012 Con	rugated PP	62' / 270.3 , smooth	37' S= 0.01 interior, Flo	00 '/' Cc= 0	
			Inlet / Outlet Ir	vert= 270. rugated PP V=271.36'	62' / 270.3 , smooth	37' S= 0.01 interior, Flo	00 '/' Cc= 0	
			Inlet / Outlet Ir n= 0.012 Con @ 12.09 hrs HW cfs @ 2.31 fps)	vert= 270. rugated PP V=271.36'	62' / 270.: , smooth (Free Dis	37' S= 0.01 interior, Flo	00 '/' Cc= 0	
			Inlet / Outlet Ir n= 0.012 Corn @ 12.09 hrs HW cfs @ 2.31 fps) Pond	Nvert= 270.1 rugated PP V=271.36' DMH4: D	62' / 270.: , smooth (Free Dis	37' S= 0.01 interior, Flo	00 '/' Cc= 0	
			Inlet / Outlet Ir n= 0.012 Con @ 12.09 hrs HW cfs @ 2.31 fps)	Nvert= 270.1 rugated PP V=271.36' DMH4: D	62' / 270.: , smooth (Free Dis	37' S= 0.01 interior, Flo	00 '/' Cc= 0	9 sf
			Inlet / Outlet Ir n= 0.012 Corr @ 12.09 hrs HW cfs @ 2.31 fps) Pond Hydrog	Vert= 270.1 rugated PP V=271.36' DMH4: D graph	62' / 270.3 , smooth (Free Dis MH4	37' S= 0.01 interior, Flo scharge)	100 '/' Cc= C w Area= 0.7	
			Inlet / Outlet Ir n= 0.012 Corr @ 12.09 hrs HV cfs @ 2.31 fps) Pond Hydrog	Vert= 270.1 rugated PP V=271.36' DMH4: D graph	62' / 270.3 , smooth (Free Dis MH4	37' S= 0.01 interior, Flo scharge)	00 '/' Cc= 0	9 sf
			Inlet / Outlet Ir n= 0.012 Corr @ 12.09 hrs HW cfs @ 2.31 fps) Pond Hydrog	Vert= 270.1 rugated PP V=271.36' DMH4: D graph	62' / 270.; , smooth (Free Dis MH4	37' S= 0.01 interior, Flo scharge)	100 '/' Cc= 0 w Area= 0.7	9 sf
			Inlet / Outlet Ir n= 0.012 Corr @ 12.09 hrs HW cfs @ 2.31 fps) Pond Hydrog	Vert= 270.1 rugated PP V=271.36' DMH4: D graph	62' / 270.; , smooth (Free Dis MH4	37' S= 0.01 interior, Flo scharge) rea=32	100 /' Cc= 0 w Area= 0.7	9 sf
			Inlet / Outlet Ir n= 0.012 Corr @ 12.09 hrs HW cfs @ 2.31 fps) Pond Hydrog	Vert= 270.1 rugated PP V=271.36' DMH4: D graph	62' / 270.3 , smooth (Free Dis MH4 flow A Peal	37' S= 0.01 interior, Flo scharge) (rea=32 (Elev=	100 '/' Cc= (w Area= 0.7 2,049 sf 271.37' 12.0''	9 sf
€_1=Cu			Inlet / Outlet Ir n= 0.012 Corr @ 12.09 hrs HW cfs @ 2.31 fps) Pond Hydrog	Vert= 270.1 rugated PP V=271.36' DMH4: D graph	62' / 270.3 , smooth (Free Dis MH4 flow A Peal	37' S= 0.01 interior, Flo scharge) vrea=32 vrea=32 v Elev=	100 // Cc= 0 w Area= 0.7 2,049 sf 271.37' 12.0'' Culvert	9 sf
			Inlet / Outlet Ir n= 0.012 Corr @ 12.09 hrs HW cfs @ 2.31 fps) Pond Hydrog	Vert= 270.1 rugated PP V=271.36' DMH4: D graph	62' / 270.3 , smooth (Free Dis MH4 flow A Peal	37' S= 0.01 interior, Flo scharge) (Elev= Round (100 '/' Cc= (w Area= 0.7 2,049 sf 271.37' 12.0''	9 sf

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

S=0.0100 '/'

Proposed HydroCAD	Type III 24-hr 2-Year Rainfall=3.00"
Prepared by Microsoft	Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 2	6 HydroCAD Software Solutions LLC Page 35

Summary for Pond DMH5: DMH5


Inflow Area =	63,736 sf, 59.81% Impervious, Inflow Depth = 1.18" for 2-Year event
Inflow =	1.81 cfs @ 12.09 hrs, Volume= 6,287 cf
Outflow =	1.81 cfs @ 12.09 hrs, Volume= 6,287 cf, Atten= 0%, Lag= 0.0 min
Primary =	1.81 cfs @ 12.09 hrs, Volume= 6,287 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 270.64' @ 12.09 hrs Flood Elev= 275.40'

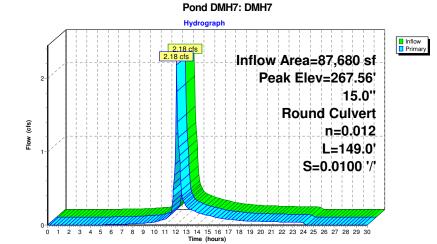
Device	Routing	Invert	Outlet Devices
	Primary		15.0" Round Culvert L= 134.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 269.89' / 268.55' S= 0.0100 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.78 cfs @ 12.09 hrs HW=270.64' (Free Discharge) 1=Culvert (Inlet Controls 1.78 cfs @ 2.32 fps)

Pond DMH5: DMH5

Proposed HydroCAD Type III 24-hr 2-Year Rainfall=3.00" Prepared by Microsoft Printed 12/23/2019 HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Page 36						
Summary for Pond DMH6: DMH6						
Inflow Area = 63,736 sf, 59.81% Impervious, Inflow Depth = 1.18" for 2-Year event Inflow = 1.81 cfs @ 12.09 hrs, Volume= 6,287 cf Outflow = 1.81 cfs @ 12.09 hrs, Volume= 6,287 cf, Atten= 0%, Lag= 0.0 min Primary = 1.81 cfs @ 12.09 hrs, Volume= 6,287 cf						
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 269.21' @ 12.09 hrs Flood Elev= 273.80'						
Device Routing Invert Outlet Devices #1 Primary 268.46' 15.0'' Round Culvert L= 165.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 268.46' / 266.81' S= 0.0100 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.23 sf						
Primary OutFlow Max=1.78 cfs @ 12.09 hrs HW=269.21' (Free Discharge) ←1=Culvert (Inlet Controls 1.78 cfs @ 2.32 fps)						
Pond DMH6: DMH6						
Hydrograph						
(g) Minute Market (g) Minute M						
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)						

Proposed HydroCAD	Type III 24-hr 2-Year Rainfall=3.00"
Prepared by Microsoft	Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 2016 Hydr	oCAD Software Solutions LLC Page 37


Summary for Pond DMH7: DMH7

Inflow Area =	87,680 sf, 57.42% Impervious, Inflow Depth = 1.05" for 2-Year e	vent
Inflow =	2.18 cfs @ 12.10 hrs, Volume= 7,686 cf	
Outflow =	2.18 cfs @ 12.10 hrs, Volume= 7,686 cf, Atten= 0%, Lag= 0	.0 min
Primary =	2.18 cfs @ 12.10 hrs, Volume= 7,686 cf	

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 267.56' @ 12.10 hrs Flood Elev= 270.85'

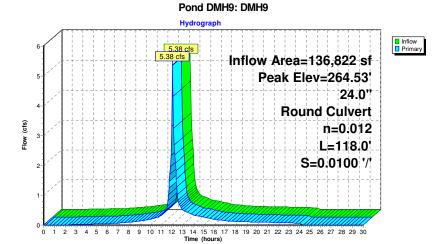
Device	Routing	Invert	Outlet Devices
#1	Primary		15.0" Round Culvert L= 149.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 266.71' / 265.22' S= 0.0100 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=2.16 cfs @ 12.10 hrs HW=267.55' (Free Discharge) 1=Culvert (Inlet Controls 2.16 cfs @ 2.46 fps)

Proposed HydroCAD Prepared by Microsoft HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions L	Type III 24-hr 2-Year Rainfall=3.00" Printed 12/23/2019 LC Page 38
Summary for Pond DMH8:	DMH8
Inflow Area = 120,988 sf, 69.14% Impervious, Inflow Depth Inflow = 4.35 cfs @ 12.09 hrs, Volume= 15,37/ Outflow = 4.35 cfs @ 12.09 hrs, Volume= 15,37/ Primary = 4.35 cfs @ 12.09 hrs, Volume= 15,37/	0 cf 0 cf, Atten= 0%, Lag= 0.0 min
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 h Peak Elev= 266.30' @ 12.09 hrs Flood Elev= 269.88'	nrs
Device Routing Invert Outlet Devices	
#1 Primary 265.12' 18.0" Round Culvert L= 163.0" CPP, projecting, no h Inlet / Outlet Invert= 265.12' / 26 n= 0.012 Corrugated PP, smoo Primary OutFlow Max=4.26 cfs @ 12.09 hrs HW=266.28' (Free to the formula to	63.49' S= 0.0100 '/' Cc= 0.900 th interior, Flow Area= 1.77 sf
	Area=120,988 sf sak Elev=266.30 18.0" Round Culvert n=0.012 L=163.0' S=0.0100 '/

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

Proposed HydroCAD	Type III 24-hr 2-Year Rainfall=3.00"
Prepared by Microsoft	Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 20	016 HydroCAD Software Solutions LLC Page 39


Summary for Pond DMH9: DMH9

Inflow Area =	136,822 sf, 72.71% Impervious,	Inflow Depth = 1.67" for 2-Year event
Inflow =	5.38 cfs @ 12.09 hrs, Volume=	19,022 cf
Outflow =	5.38 cfs @ 12.09 hrs, Volume=	19,022 cf, Atten= 0%, Lag= 0.0 min
Primary =	5.38 cfs @ 12.09 hrs, Volume=	19,022 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 264.53' @ 12.09 hrs Flood Elev= 268.83'

#1 Primary 263.38' 24.0" Round Culvert	
L= 118.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 263.38' / 262.20' S= 0.0100 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 3.14 sf	

Primary OutFlow Max=5.26 cfs @ 12.09 hrs HW=264.51' (Free Discharge) 1=Culvert (Inlet Controls 5.26 cfs @ 2.86 fps)

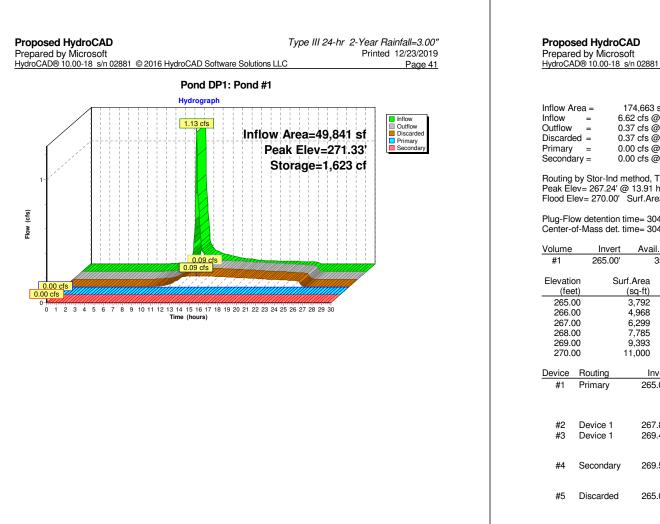
Proposed HydroCAD Type III 24-hr 2-Year Rainfall	
	=3.00"
Prepared by Microsoft Printed 12/23	3/2019
HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Pa	age 40

Summary for Pond DP1: Pond #1

3,705 cf, Atten= 92%, Lag= 107.1 min

Inflow Area =	49,841 sf, 50.39% Impervious,	Inflow Depth = 0.89" for 2-Year event
Inflow =	1.13 cfs @ 12.10 hrs, Volume=	3,705 cf
Outflow =	0.09 cfs @ 13.88 hrs, Volume=	3,705 cf, Atten= 92%, Lag= 107.1
Discarded =	0.09 cfs @ 13.88 hrs, Volume=	3,705 cf
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 271.33' @ 13.88 hrs Surf.Area= 1,594 sf Storage= 1,623 cf Flood Elev= 275.00' Surf.Area= 4,336 sf Storage= 12,246 cf


Plug-Flow detention time= 204.5 min calculated for 3,705 cf (100% of inflow) Center-of-Mass det. time= 204.3 min (1,048.6 - 844.3)

Volume	Invert	Avail.Stor	rage Storage	Description			
#1	270.00'	12,24	16 cf Custom	Stage Data (Conic	c) Listed below (Reca	llc)	
Elevatio (fee		rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
270.0	00	878	0	0	878		
271.0	00	1,400	1,129	1,129	1,413		
272.0	00	2,026	1,703	2,832	2,056		
273.0	00	2,742	2,375	5,207	2,793		
274.0		3,515	3,121	8,328	3,591		
275.0	00	4,336	3,918	12,246	4,441		
Device	Routing	Invert	Outlet Device	s			
#1	Primary	270.28'	12.0" Round Culvert L= 116.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 270.28' / 269.12' S= 0.0100 '/' Cc= 0.900				
#2	Device 1	273.80'		n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf 24.0" x 24.0" Horiz. Top Grate			
₩∠	Device I	275.00	$C = 0.600 \text{ in } 24.0^{\circ} \text{ x } 24.0^{\circ} \text{ Grate} (100\% \text{ open area})$				
			Limited to weir flow at low heads				
#3	Secondary	274.50'					
	-			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60			
					2.69 2.68 2.69 2.6	7 2.64	
#4	Discarded	270.00'	2.410 in/hr Ex	filtration over Wet	tted area		

Discarded OutFlow Max=0.09 cfs @ 13.88 hrs HW=271.33' (Free Discharge) 4=Exfiltration (Exfiltration Controls 0.09 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=270.00' (Free Discharge) 1=Culvert (Controls 0.00 cfs)

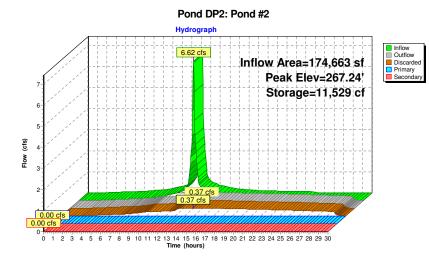
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=270.00' (Free Discharge)

Proposed HydroCAD Prepared by Microsoft			ll 24-hr 2-Year Rainfall=3 Printed 12/23/2	
lydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC			Page	e 42
Summary for Pond DP2: Pond #2				
nflow Area =	174,663 sf, 72.49% Impervious, Inflow Depth =	1.61"	for 2-Year event	

Inflow Area =	1/4,663 st, /2.49% Impervious,	Inflow Depth = 1.61" for 2-Year event
Inflow =	6.62 cfs @ 12.09 hrs, Volume=	23,415 cf
Outflow =	0.37 cfs @ 13.91 hrs, Volume=	23,414 cf, Atten= 94%, Lag= 109.6 min
Discarded =	0.37 cfs @ 13.91 hrs, Volume=	23,414 cf
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 267.24' @ 13.91 hrs Surf.Area= 6,639 sf Storage= 11,529 cf Flood Elev= 270.00' Surf.Area= 11,000 sf Storage= 35,778 cf

Plug-Flow detention time= 304.7 min calculated for 23,375 cf (100% of inflow) Center-of-Mass det. time= 304.7 min (1,062.5 - 757.8)


Volume	Invert	Avail.Stor	rage Storage I	Description		
#1	265.00'	35,77	78 cf Custom	Stage Data (Conic	c) Listed below (Re	ecalc)
Elevatio (fee		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
265.0 266.0 267.0	0	3,792 4,968 6,299	0 4,367 5,620	0 4,367 9,987	3,792 4,991 6,348	
268.0 269.0 270.0	0	7,785 9,393 11,000	7,029 8,576 10,186	17,016 25,592 35,778	7,864 9,505 11,151	
Device	Routing	Invert	Outlet Devices	;	11,151	
#1	Primary	265.00'	Inlet / Outlet In	P, projecting, no he vert= 265.00' / 26	eadwall, Ke= 0.90 4.77' S= 0.0100 ' th interior, Flow A	/' Cc= 0.900
#2 #3	Device 1 Device 1	267.80' 269.40'	3.0" Vert. Orifi 24.0" x 24.0" H C= 0.600 in 2-	ce C= 0.600 loriz. Top Grate	(100% open area)	
#4	Secondary	269.50'	10.0' long x 1 Head (feet) 0.	0.0' breadth Broa 20 0.40 0.60 0.8	d-Crested Rectan 30 1.00 1.20 1.40 2.69 2.68 2.69	0 1.60
#5	Discarded	265.00'	2.410 in/hr Ex	filtration over We	tted area	

Proposed HydroCAD	Type III 24-hr 2-Year Rainfall=3.00"
Prepared by Microsoft	Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC	Page 43

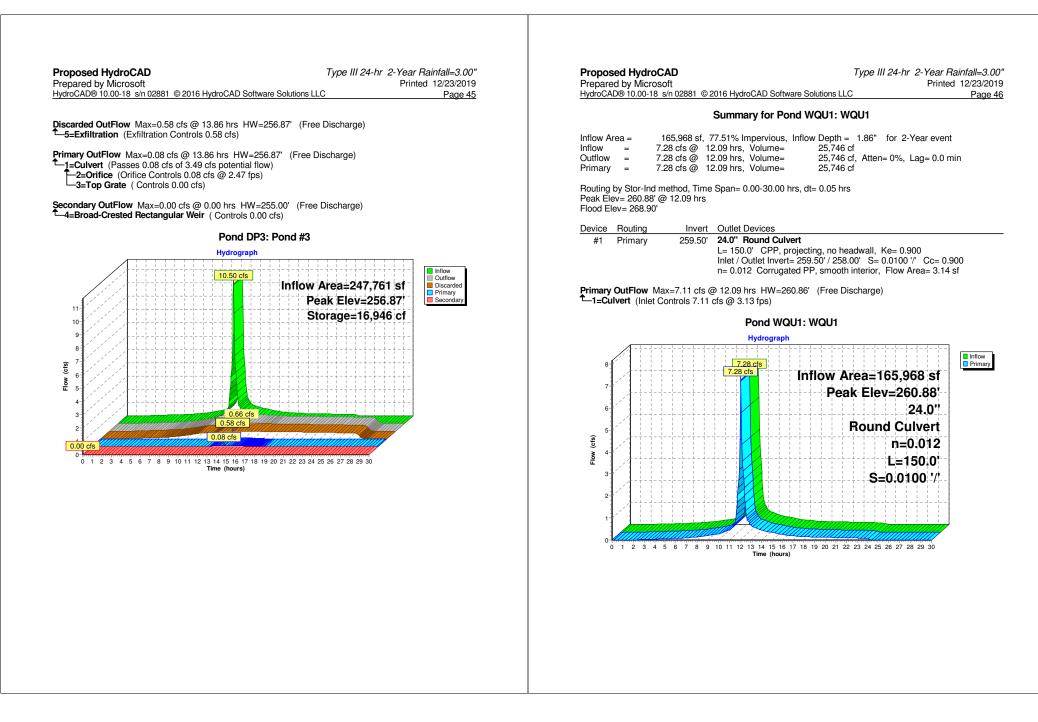
Discarded OutFlow Max=0.37 cfs @ 13.91 hrs HW=267.24' (Free Discharge) 5=Exfiltration (Exfiltration Controls 0.37 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=265.00' (Free Discharge) 1=Culvert (Controls 0.00 cfs) 2=Orifice (Controls 0.00 cfs) 3=Top Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=265.00' (Free Discharge)

		Summary fo	r Pond DP3: Pond	1 #3
Outflow Discarded	= 10.50 cfs @ = 0.66 cfs @ = 0.58 cfs @ = 0.08 cfs @	12.09 hrs, Volun 13.86 hrs, Volun 13.86 hrs, Volun 13.86 hrs, Volun 13.86 hrs, Volun	ne= 37,142 c ne= 37,142 c ne= 35,955 c ne= 1,187 c	f, Atten= 94%, Lag= 106.3 min f f
Peak Elev= Flood Elev= Plug-Flow of Center-of-N	= 256.87' @ 13.86 h = 260.00' Surf.Area detention time= 260 Jass det. time= 260	rs Surf.Area= 10, a= 14,828 sf Stora .8 min calculated f .7 min (1,034.2 - 7	or 37,080 cf (100% o 773.4)	
Volume #1		Storage Storage		
	200.00 0.	5,948 cf Custom	Stage Data (Conic) L	listed below (Recalc)
Elevation (feet) 255.00 256.00 257.00 258.00 259.00	Surf.Area (sq-ft) 7,916 9,155 10,449 11,800 13,208	Inc.Store (cubic-feet) 0 8,528 9,795 11,118 12,497	Stage Data (Conic) I Cum.Store (cubic-feet) 0 8,528 18,323 29,441 41,938	Listed below (Hecalc) Wet.Area (sq-ft) 7,916 9,197 10,538 11,940 13,403

Type III 24-hr 2-Year Rainfall=3.00"


Printed 12/23/2019

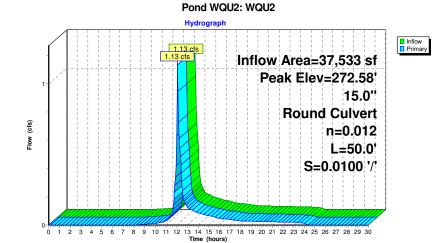
Page 44

Proposed HydroCAD

Prepared by Microsoft HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	255.00'	12.0" Round Culvert
	-		L= 38.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 255.00' / 254.62' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf
#2	Device 1	256.50'	2.5" Vert. Orifice C= 0.600
#3	Device 1	259.80'	24.0" x 24.0" Horiz. Top Grate
			C= 0.600 in 24.0" x 24.0" Grate (100% open area)
			Limited to weir flow at low heads
#4	Secondary	259.90'	10.0' long x 10.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64
#5	Discarded	255.00'	2.410 in/hr Exfiltration over Wetted area

Proposed HydroCAD	Type III 24-hr 2-Year Rainfall=3.00"
Prepared by Microsoft	Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC	Page 47

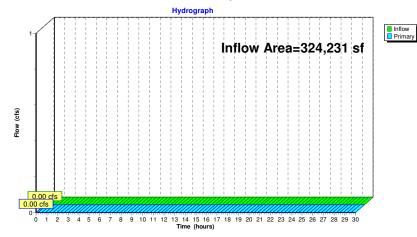

Summary for Pond WQU2: WQU2

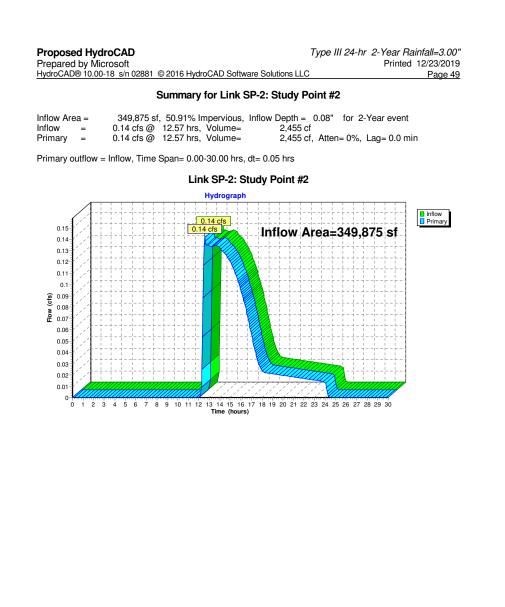
Inflow Area =	37,533 sf, 66.78% Impervious,	Inflow Depth = 1.18" for 2-Year event
Inflow =	1.13 cfs @ 12.10 hrs, Volume=	3,705 cf
Outflow =	1.13 cfs @ 12.10 hrs, Volume=	3,705 cf, Atten= 0%, Lag= 0.0 min
Primary =	1.13 cfs @ 12.10 hrs, Volume=	3,705 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 272.58' @ 12.10 hrs Flood Elev= 275.35'

Device Routin	g Invert	Outlet Devices
#1 Primai		15.0" Round Culvert L= 50.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 272.00' / 271.50' S= 0.0100 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.23 sf

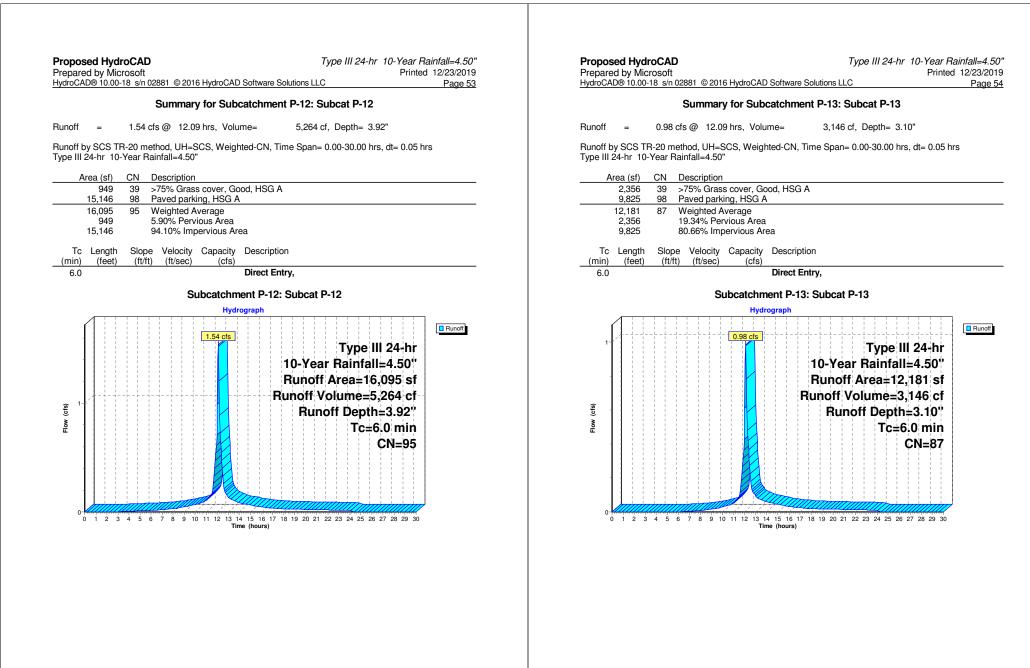
Primary OutFlow Max=1.12 cfs @ 12.10 hrs HW=272.57' (Free Discharge) 1=Culvert (Inlet Controls 1.12 cfs @ 2.04 fps)

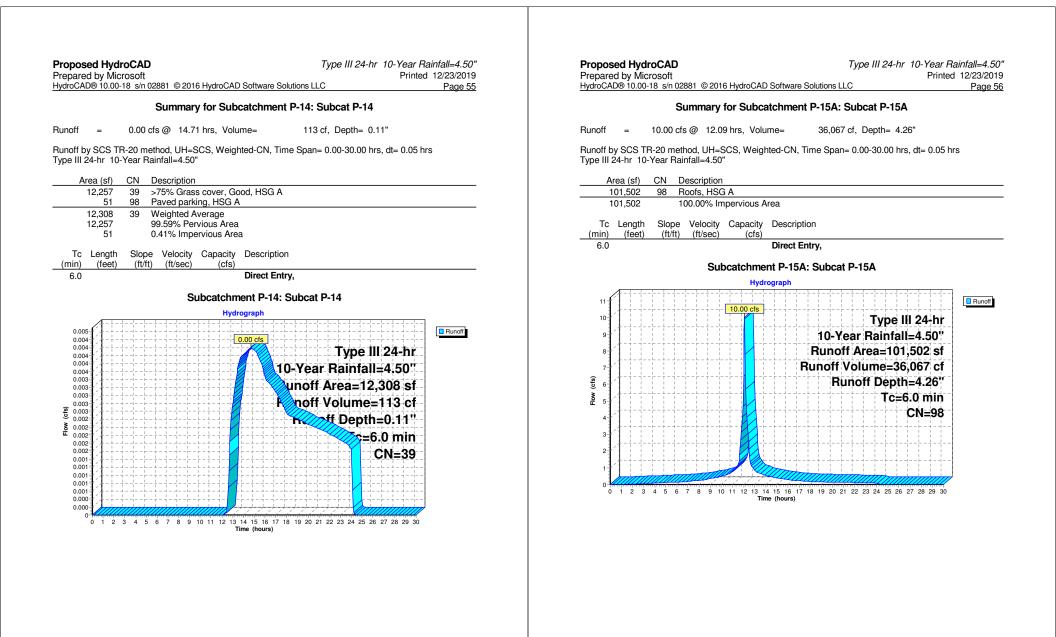

Proposed HydroCAD Prepared by Microsoft	Type III 24-hr 2-Year Rainfall=3.00" Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Softwar	e Solutions LLC Page 48
Summary for Link SE	P-1: Study Point #1

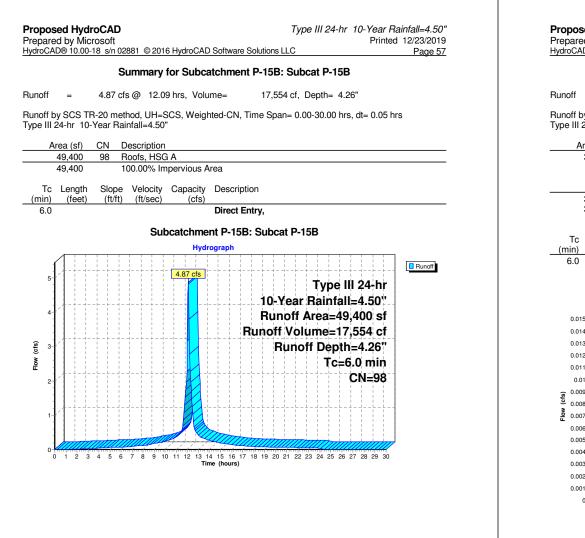

Summary for Link SP-1: Study Point #1

Inflow Area	a =	324,231 sf,	39.05% Impervious,	Inflow Depth = 0.00"	for 2-Year event
Inflow	=	0.00 cfs @	0.00 hrs, Volume=	0 cf	
Primary	=	0.00 cfs @	0.00 hrs, Volume=	0 cf, Atten	= 0%, Lag= 0.0 min

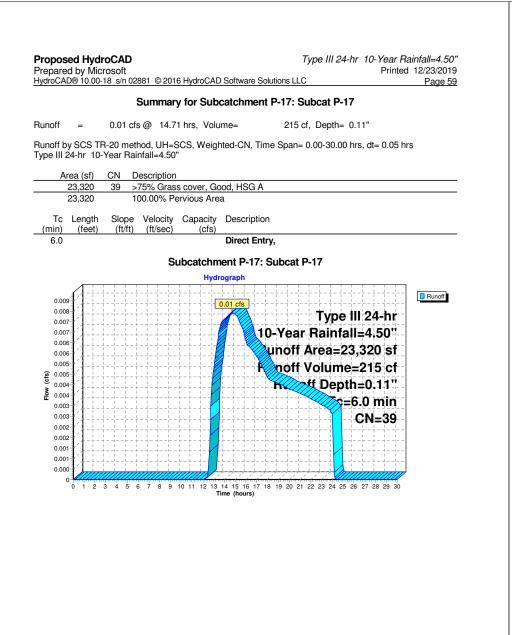
Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

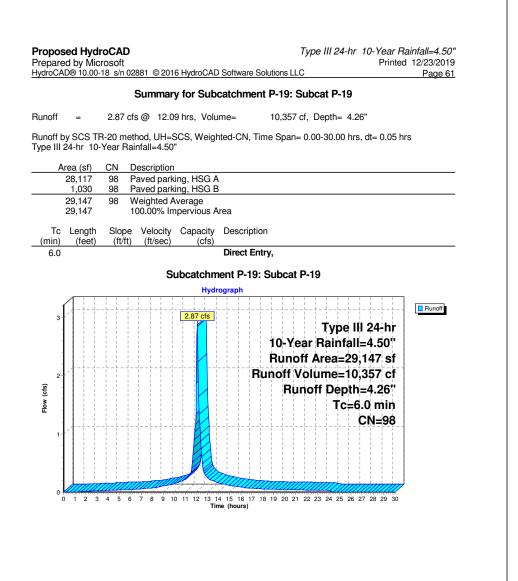


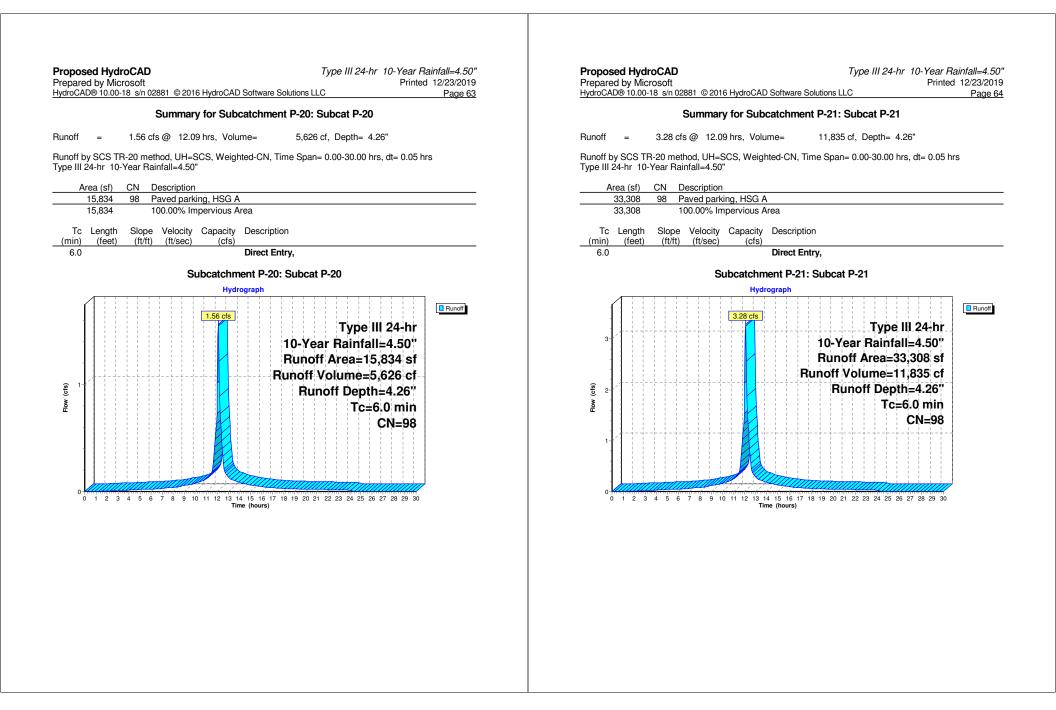


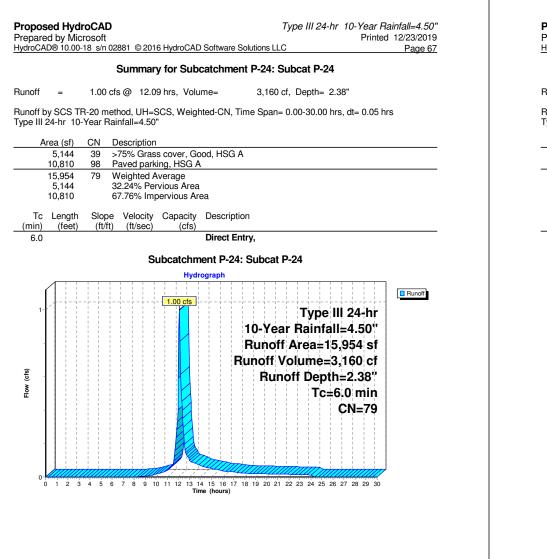

IroCAD® 10.00-18	soft s/n 02881 © 2016 HydroCAD S		12/23/201 Page 5
	Summary for Subc	atchment P-1: Subcat P-1	
noff = (0.19 cfs @ 12.10 hrs, Volume	e= 659 cf, Depth= 1.33"	
	20 method, UH=SCS, Weighte ear Rainfall=4.50"	d-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs	
	CN Description		
-)	 39 >75% Grass cover, Good 98 Paved parking, HSG A 	I, HSG A	
	65 Weighted Average 55.63% Pervious Area 44.37% Impervious Area		
Tc Length min) (feet)	Slope Velocity Capacity D (ft/ft) (ft/sec) (cfs)	Description	
6.0	C	Direct Entry,	
	Subcatchme	ent P-1: Subcat P-1	
0.21 0.2 0.9 0.19 0.18 0.7 0.16 0.15 0.12 0.14 0.12 0.14 0.15 0.12 0.12 0.19 0.14 0.15 0.12 0.19 0.14 0.15 0.12 0.19 0.14 0.15 0.12 0.19 0.14 0.15 0.12 0.19 0.14 0.15 0.12 0.19 0.14 0.15 0.05 0.05 0.05 0.05 0.02 0.02 0.02 0.02 0.05 0.02 0.02 0.05 0.02 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.02 0.05 0.02 0.0		Type III 24-hr 10-Year Rainfall=4.50" Runoff Area=5,945 sf Runoff Volume=659 cf Runoff Depth=1.33" Tc=6.0 min CN=65	Runoff

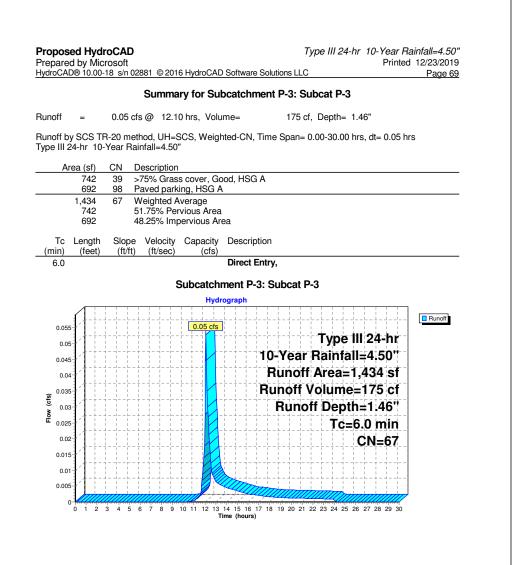
	d by Mic D® 10.00-		2881 © 201	6 HydroCAD	Software Sol	utions LLC	Printeo	12/23/2019 Page 5
			Summar	y for Subo	catchment	P-10: Subcat P-10)	
unoff	=	0.67 cf	s@ 12.0	9 hrs, Volu	me=	2,132 cf, Depth= 2	2.13"	
					ted-CN, Tim	ie Span= 0.00-30.00 l	hrs, dt= 0.05 h	ſS
			infall=4.50					
A	r <u>ea (sf)</u> 4,394	39 >		s cover, Go				
	7,616		Paved park Veighted A	ing, HSG A				
	12,010 4,394	3	36.58% Per	rvious Area				
	7,616	6	63.42% Imp	pervious Are	ea			
Tc	Length	Slope		Capacity	Description	I		
(min) 6.0	(feet)	(ft/ft)	(ft/sec)	(cfs)	Direct Entr	V.		
0.0			-			••		
			S			Subcat P-10		
		+		Hydr	ograph			
0.75				0.67 cfs				Runoff
0.65		+				Туре	III 24-hr	
0.6		!!+			1	0-Year Rainfa	II=4.50"	
0.55 0.5	(/					Runoff Area=1	2,010 sf	
0.5					Ru	noff Volume=	2,132 cf	
0.4 (cts) 0.4						Runoff Dept	h=2.13"	
-		+				Тс=	-6.0 min	
0.3	 ,}						CN=76	
0.20		+ 						
0.15	113							
0.1		+						
0.05					<i>411111</i>	mmmmmm		


Proposed Hyde Prepared by Mic HydroCAD® 10.00-	rosoft	HydroCAD	Type III 24-hr 10-Year Rainfall=4.50" Printed 12/23/2019 Software Solutions LLC Page 52				
Summary for Subcatchment P-11: Subcat P-11							
Runoff =	0.02 cfs @ 15.68	hrs, Volun	ne= 594 cf, Depth= 0.05"				
	R-20 method, UH=Se Year Rainfall=4.50"	CS, Weight	ted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs				
Area (sf)	CN Description						
35,319 93,727 20,521	39 >75% Grass 30 Woods, Goo 55 Woods, Goo	d, HSG A	od, HSG A				
149,568 149,568	36 Weighted Av 100.00% Per						
Tc Length (min) (feet)	Slope Velocity (ft/ft) (ft/sec)	Capacity (cfs)	Description				
8.6 50	0.2000 0.10		Sheet Flow,				
0.5 72	0.2000 2.24		Woods: Dense underbrush $n=0.800$ P2= 3.16" Shallow Concentrated Flow, Woodland Kv= 5.0 fps				
9.1 122	Total						
	Su	bcatchme	ent P-11: Subcat P-11				
		Hydro	ograph				
0.018 0.017 0.016 0.015 0.014 (1) 0.013 0.013 0.013 0.011 0.013 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.012 0.013 0.012 0.013 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.012 0.017 0.017 0.016 0.015 0.012 0.017 0.007 0.	pe JII 24-hr -Year Rainfall Inoff Area=14 Inoff Volume= Inoff Depth=0 pw Length=12 ope=0.2000 '/' =9.1 min N=36	=4.50" 9,568 sf -594 cf .05" 22	0.02 cfs 0.02 c				




Proposed HydroCAD Type III 24-hr 10-Year Ra Prepared by Microsoft Printed HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC	infall=4.50" 12/23/2019 Page 58						
Summary for Subcatchment P-16: Subcat P-16							
Runoff = 0.01 cfs @ 13.77 hrs, Volume= 368 cf, Depth= 0.14"							
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"	;						
Area (sf) CN Description							
31,821 39 >75% Grass cover, Good, HSG A 472 61 >75% Grass cover, Good, HSG B							
99 98 Paved parking, HSG A							
1 98 Paved parking, HSG B 32.392 40 Weighted Average							
32,292 99.69% Pervious Area 100 0.31% Impervious Area							
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)							
6.0 Direct Entry,							
Subcatchment P-16: Subcat P-16							
Hydrograph							
0.015	Runoff						
0.014 0.014 Contest Type III 24-hr							
0.012 0.011							
€ nonff Volume=368 cf							
g 0.005 g 0.007 moff Depth=0.14"							
- 0.006							
0.005 CN=40							
0.004							
0.002							
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)							


Prepare	ed Hyd d by Mic D® 10.00-	rosoft	Type III 24-hr 10-Ye Pr 6 HydroCAD Software Solutions LLC	<i>ar Rainfall=4.50"</i> rinted 12/23/2019 Page 60		
Summary for Subcatchment P-18: Subcat P-18						
Runoff	=	0.91 cfs @ 12.2	4 hrs, Volume= 5,456 cf, Depth= 0.64"			
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"						
A	rea (sf)	CN Description				
	23,317		s cover, Good, HSG A			
	41,898 61 >75% Grass cover, Good, HSG B 5,189 30 Woods, Good, HSG A 31,710 55 Woods, Good, HSG B					
1	02,115	53 Weighted A	Average			
1	02,115	100.00% P	ervious Area			
Tc	Length	Slope Velocity	Capacity Description			
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)			
11.4	50	0.1000 0.07	Sheet Flow, Woods: Dense underbrush n= 0.800 P2	2= 3 16"		
0.8	70	0.0800 1.41	Shallow Concentrated Flow, Woodland Kv= 5.0 fps			
12.2	120	Total				
-1 -		S	0.91 cfs 10-Year Rainfall=4.50 Runoff Area=102,115 Runoff Depth=0.64 Flow Length=12)" sf cf !"		
0	1 2 3	4 5 6 7 8 9 1	0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Time (hours)	i3		


ype III 24-hr 10-Year Rainfall=4.50" Printed 12/23/2019 Page 62
bcat P-2
, Depth= 1.90"
0.00-30.00 hrs, dt= 0.05 hrs
-2 Type III 24-hr Rainfall=4.50" Area=4,529 sf olume=715 cf f Depth=1.90" Tc=6.0 min CN=73 2 23 24 25 26 27 28 29 30

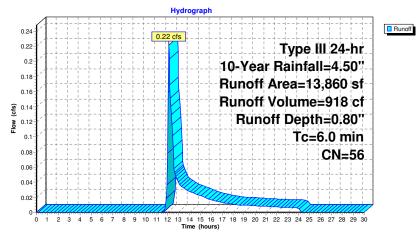
Prepared by Microsoft Printed 12/23/20 HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Page	
Summary for Subcatchment P-22: Subcat P-22	Summary for Subcatchment P-23: Subcat P-23
Runoff = 0.58 cfs @ 12.10 hrs, Volume= 1,959 cf, Depth= 1.40"	Runoff = 0.41 cfs @ 12.09 hrs, Volume= 1,310 cf, Depth= 2.21"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"
Area (sf) CN Description	Area (sf) CN Description
9,035 39 >75% Grass cover, Good, HSG A 7,796 98 Paved parking, HSG A	2,239 39 >75% Grass cover, Good, HSG A 448 61 >75% Grass cover, Good, HSG B
16,831 66 Weighted Average	4,427 98 Paved parking, HSG A
9,035 53.68% Pervious Area 7,796 46.32% Impervious Area	7,114 77 Weighted Average 2,687 37.77% Pervious Area 4,427 62.23% Impervious Area
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	Tc Length Slope Velocity Capacity Description
6.0 Direct Entry,	
Subcatchment P-22: Subcat P-22	
Hydrograph	Subcatchment P-23: Subcat P-23 Hydrograph
0.55 0.56 0.58 cfs 10-Year Rainfall=4.50" Runoff Area=16,831 sf Runoff Volume=1,959 cf Runoff Depth=1.40" CN=66 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	(i) (i) (i) (i) (i) (i) (i) (i)

Proposed HydroC. Prepared by Microso HydroCAD® 10.00-18 s	
	Summary for Subcatchment P-25: Subcat P-25
Runoff = 0.2	28 cfs @ 12.09 hrs, Volume= 901 cf, Depth= 2.21"
Runoff by SCS TR-20 Type III 24-hr 10-Yea) method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs r Rainfall=4.50"
Area (sf) CN	Description
1,767 39 3,123 98	
4,890 77 1,767 3,123	
	lope Velocity Capacity Description ft/ft) (ft/sec) (cfs)
6.0	Direct Entry,
0.3 0.28 0.24 0.22 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.	Subcatchment P-25: Subcat P-25 Hydrograph 0.28 cfs Type III 24-hr 10-Year Rainfall=4.50" Runoff Area=4,890 sf Runoff Volume=901 cf Runoff Depth=2.21" Tc=6.0 min CN=77 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Proposed HydroCAD Type III 24-hr 10-Year Ra Prepared by Microsoft Printed HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Printed	ainfall=4.50" 12/23/2019 Page 70
Summary for Subcatchment P-4: Subcat P-4	
Runoff = 0.06 cfs @ 12.09 hrs, Volume= 183 cf, Depth= 2.13"	
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hr: Type III 24-hr 10-Year Rainfall=4.50"	S
Area (sf) CN Description	
377 39 >75% Grass cover, Good, HSG A 652 98 Paved parking, HSG A	
1,029 76 Weighted Average	
377 36.60% Pervious Area 652 63.40% Impervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry,	
Subcatchment P-4: Subcat P-4	
Hydrograph	
(9) (9) (9) (9) (9) (9) (9) (9)	Runoff

Proposed HydroCAD	Type III 24-hr 10-Year Rainfall=4.50"
Prepared by Microsoft	Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solu	utions LLC Page 71

Summary for Subcatchment P-5: Subcat P-5


Runoff 0.22 cfs @ 12.11 hrs, Volume= =

918 cf, Depth= 0.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

Area (sf)	CN	Description						
7,297	39	>75% Grass cover, Good, HSG A						
3,927	61	>75% Grass cover, Good, HSG B						
2,447	98	Paved parking, HSG A						
189	30	Woods, Good, HSG A						
13,860	56	Weighted Average						
11,413		82.34% Pervious Area						
2,447		17.66% Impervious Area						
Tc Length (min) (feet)	Slop (ft/							
6.0		Direct Entry,						

Subcatchment P-5: Subcat P-5

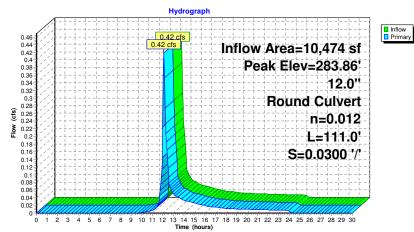
Proposed HydroCAD Type III 24-hr 10-Year Rainfall=4.50" Prepared by Microsoft Printed 12/23/2019 HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Page 72
Summary for Subcatchment P-7: Subcat P-7
Runoff = 0.30 cfs @ 12.10 hrs, Volume= 944 cf, Depth= 2.05"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"
Area (sf) CN Description
2,121 39 >75% Grass cover, Good, HSG A
3,402 98 Paved parking, HSG A 5,524 75 Weighted Average
2,121 38.41% Pervious Area
3,402 61.59% Impervious Area
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry,
Event the second

IYUIUCAD	w 10.00-	18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Page 73
		Summary for Subcatchment P-8: Subcat P-8
		-
Runoff	=	0.19 cfs @ 12.10 hrs, Volume= 616 cf, Depth= 1.75"
		R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Year Rainfall=4.50"
Are	ea (sf)	CN Description
	1,911 2,318	 39 >75% Grass cover, Good, HSG A 98 Paved parking, HSG A
	4,229	71 Weighted Average
	1,911 2,318	45.19% Pervious Area 54.81% Impervious Area
Tc ((min)	Length (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)
6.0		Direct Entry,
40.21 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		0.19 cfs Type III 24-hr 10-Year Rainfall=4.50" Runoff Area=4,229 sf Runoff Volume=616 cf Runoff Depth=1.75" Tc=6.0 min CN=71
0.01		
0	1 2 3	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

Prepare	ed Hydr d by Mic D® 10.00-	rosoft		6 HydroCAE) Software Solut		nr 10-Year Rainfall=4 Printed 12/23/2 Pag
			Summa	ry for Su	bcatchment	P-9: Subcat P-9	
Runoff	=	0.15	cfs @ 12.1	0 hrs, Volu	ime=	500 cf, Depth= 1	.67"
Runoff b Type III 2	y SCS TF 24-hr 10-	R-20 m Year R	ethod, UH= ainfall=4.50	SCS, Weigl "	hted-CN, Time	Span= 0.00-30.00 h	nrs, dt= 0.05 hrs
A	rea (sf)	CN	Description	l			
	1,687	39			ood, HSG A		
	1,901 3,588	<u>98</u> 70	Paved park Weighted A		1		
	1,687	10	47.01% Pe	rvious Area			
	1,901		52.99% Im	pervious Ar	ea		
Тс	Length	Slop		Capacity	Description		
<u>(min)</u> 6.0	(feet)	(ft/ft	t) (ft/sec)	(cfs)	Direct Entry,		
			;		ment P-9: Su	ubcat P-9	
	A	!	+	Hydi	rograph		
0.17	[]		+	0.15 cfs			Run
0.16		i i	+++		+	Type I	ll 24-hr
0.14	[]					Year Rainfal	
0.13	Ĩ,∤-┼-┼		$\frac{1}{1} = -\frac{1}{1} = -\frac{1}{1} = -\frac{1}{1} = -\frac{1}{1} = -\frac{1}{1}$	+++	†ii iii	inoff Area=3	
0.11	1111						
0.1 ع 0.09 ع	[/+-+-+			+		noff Volume:	
80.09 B	 					Runoff Depth	r=1.67"
0.07	1		++-		++-+	Tc=6	5.0 min
0.06	[/						CN=70
0.05					+ - + - + - + - + - + - +		
0.03	1		++-				
0.02	[/						
	1		to the second second				
0	0 1 2 3	4 5	6789	the for the start of the start	. tí na tí na tí na tí na tí na	9 20 21 22 23 24 25 2	/////////////////////////////////////

Proposed HydroCAD	Type III 24-hr	10-Year Rainfall=4.50"
Prepared by Microsoft		Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 @	© 2016 HydroCAD Software Solutions LLC	Page 75

Summary for Pond DMH1: DMH1


Inflow Area =	10,474 sf, 50.15% Impervious, Inflow Depth = 1.57" for 10-Year event	
Inflow =	0.42 cfs @ 12.10 hrs, Volume= 1,375 cf	
Outflow =	0.42 cfs @ 12.10 hrs, Volume= 1,375 cf, Atten= 0%, Lag= 0.0 min	
Primary =	0.42 cfs @ 12.10 hrs, Volume= 1,375 cf	

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 283.86' @ 12.10 hrs Flood Elev= 287.50'

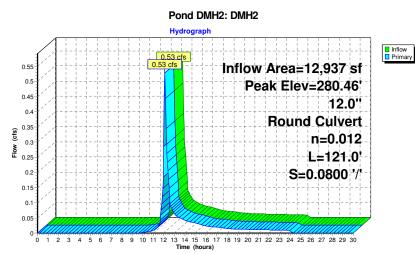
Device	Routing	Invert	Outlet Devices
#1	Primary		12.0" Round Culvert L= 111.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 283.50' / 280.17' S= 0.0300 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.42 cfs @ 12.10 hrs HW=283.86' (Free Discharge) 1=Culvert (Inlet Controls 0.42 cfs @ 1.62 fps)

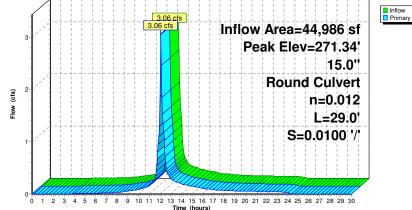
Pond DMH1: DMH1

			Software Solutions LLC		Pag
		Summary for	Pond DMH10: DN	IH10	
Inflow Area Inflow Outflow Primary	= 1.31 cfs (= 1.31 cfs (2 sf, 60.11% Imperv @ 12.10 hrs, Volu @ 12.10 hrs, Volu @ 12.10 hrs, Volu	me= 4,191 c	;, Atten= 0%, Lag= 0.0	
	273.94' @ 12.10		0.00 hrs, dt= 0.05 hrs		
Device R	outing Ir	nvert Outlet Device	es		
#1 P	rimary 27:	Inlet / Outlet I	PP, projecting, no hea nvert= 273.24' / 272.1	dwall, Ke= 0.900 0' S= 0.0100 '/' Cc= (nterior, Flow Area= 0.7	
Primary Ou 1=Culve	utFlow Max=1.30 ert (Inlet Controls	1.30 cfs @ 2.24 fps		charge)	
		PONO Hydro	DMH10: DMH10		
		1.31.cfs 1.31 cfs		rea=25,352 sf Elev=273.94	Inflow
1-*			F	12.0" lound Culvert	
Flow (cfs)				n=0.012 L=114.0'	
				S=0.0100 '/'	
0	2 3 4 5 6 7	8 9 10 11 12 13 14	15 16 17 18 19 20 21 22	23 24 25 26 27 28 29 30	-
0			(hours)		

Proposed HydroCAD	Type III 24-hr	10-Year Rainfall=4.50"
Prepared by Microsoft		Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions	LLC	Page 77


Summary for Pond DMH2: DMH2

Inflow Area =	12,937 sf, 50.99% Impervious,	Inflow Depth = 1.61" for 10-Year event
Inflow =	0.53 cfs @ 12.10 hrs, Volume=	1,732 cf
Outflow =	0.53 cfs @ 12.10 hrs, Volume=	1,732 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.53 cfs @ 12.10 hrs, Volume=	1,732 cf

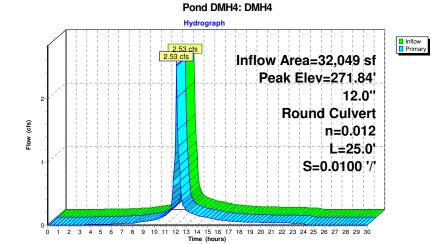

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 280.46' @ 12.10 hrs Flood Elev= 284.16'

Device	Routing	Invert	Outlet Devices
#1	Primary	280.05'	12.0" Round Culvert
			L= 121.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 280.05' / 270.37' S= 0.0800 '/ Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.53 cfs @ 12.10 hrs HW=280.46' (Free Discharge) 1=Culvert (Inlet Controls 0.53 cfs @ 1.73 fps)

Proposed HydroCAD Type III 24-hr 10-Year Rainfall=4.50" Prepared by Microsoft Printed 12/23/2019 HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Page 78 Summary for Pond DMH3: DMH3 Inflow Area = 44,986 sf, 72.36% Impervious, Inflow Depth = 2.71" for 10-Year event Inflow 3.06 cfs @ 12.09 hrs, Volume= 10.156 cf = 10,156 cf, Atten= 0%, Lag= 0.0 min 3.06 cfs @ 12.09 hrs, Volume= Outflow = 3.06 cfs @ 12.09 hrs, Volume= 10,156 cf Primary = Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 271.34' @ 12.09 hrs Flood Elev= 276.00' Device Routing Invert Outlet Devices #1 Primary 270.28' 15.0" Round Culvert L= 29.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 270.28' / 269.99' S= 0.0100 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.23 sf Primary OutFlow Max=3.00 cfs @ 12.09 hrs HW=271.32' (Free Discharge) 1=Culvert (Inlet Controls 3.00 cfs @ 2.74 fps) Pond DMH3: DMH3 Hydrograph

Proposed HydroCAD	Type III 24-hr	10-Year Rainfall=4.50"
Prepared by Microsoft		Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881	© 2016 HydroCAD Software Solutions LLC	Page 79


Summary for Pond DMH4: DMH4

Inflow Area =	32,049 sf, 80.99% Impervious,	Inflow Depth = 3.15" for 10-Year event
Inflow =	2.53 cfs @ 12.09 hrs, Volume=	8,424 cf
Outflow =	2.53 cfs @ 12.09 hrs, Volume=	8,424 cf, Atten= 0%, Lag= 0.0 min
Primary =	2.53 cfs @ 12.09 hrs, Volume=	8,424 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 271.84' @ 12.09 hrs Flood Elev= 275.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	270.62'	12.0" Round Culvert L= 25.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 270.62' / 270.37' S= 0.0100 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf

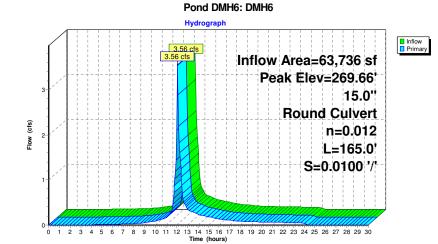
Primary OutFlow Max=2.48 cfs @ 12.09 hrs HW=271.81' (Free Discharge) 1=Culvert (Inlet Controls 2.48 cfs @ 3.15 fps)

Proposed Hydro Prepared by Micro HydroCAD® 10.00-1		Type III 24-hr 10-Year Rainfall=4.50" Printed 12/23/2019 ns LLC Page 80
	Summary for Pond DMH	5: DMH5
Outflow =	3.56 cfs @ 12.09 hrs, Volume= 11,	pth = 2.25" for 10-Year event 975 cf 975 cf, Atten= 0%, Lag= 0.0 min 975 cf
Routing by Stor-Ind Peak Elev= 271.09 Flood Elev= 275.40		15 hrs
Device Routing	Invert Outlet Devices	
	n= 0.012 Corrugated PP, sm Max=3.51 cfs @ 12.09 hrs HW=271.07' (Fre t Controls 3.51 cfs @ 2.92 fps)	'268.55' S= 0.0100 '/' Cc= 0.900 nooth interior, Flow Area= 1.23 sf ee Discharge)
	Pond DMH5: DMH	15
Flow (cfs)		w Area=63,736 sf Yeak Elev=271.09 15.0'' Round Culvert n=0.012 L=134.0' S=0.0100 '/

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

0

Proposed HydroCAD	Type III 24-hr	10-Year Rainfall=4.50"
Prepared by Microsoft		Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881	© 2016 HydroCAD Software Solutions LLC	Page 81


Summary for Pond DMH6: DMH6

Inflow Area =	63,736 sf, 59.81% Impervious, Inflow Depth = 2.25" for 10-Year event
Inflow =	3.56 cfs @ 12.09 hrs, Volume= 11,975 cf
Outflow =	3.56 cfs @ 12.09 hrs, Volume= 11,975 cf, Atten= 0%, Lag= 0.0 min
Primary =	3.56 cfs @ 12.09 hrs, Volume= 11,975 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 269.66' @ 12.09 hrs Flood Elev= 273.80'

Device Routing Invert Outlet Devices	
#1 Primary 268.46' 15.0" Round Culvert L= 165.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 268.46' / 266.81' S= 0.0100 '/ Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.23 sf	

Primary OutFlow Max=3.51 cfs @ 12.09 hrs HW=269.64' (Free Discharge) 1=Culvert (Inlet Controls 3.51 cfs @ 2.92 fps)

Prepared by Mic HydroCAD® 10.00	rosoft 18_s/n 02881_© 2016 HydroCAD S	oftware Solutions LLC	Printed 12/23/2019 Page 82
	Summary for	Pond DMH7: DMH7	
Inflow Area = Inflow = Outflow = Primary =	87,680 sf, 57.42% Impervio 4.56 cfs @ 12.09 hrs, Volum 4.56 cfs @ 12.09 hrs, Volum 4.56 cfs @ 12.09 hrs, Volum	e= 15,244 cf, Atten= 0	
Routing by Stor-In Peak Elev= 268.2 Flood Elev= 270.1 Device Routing		00 hrs, dt= 0.05 hrs	
#1 Primary	266.71' 15.0'' Round C L= 149.0' CPF Inlet / Outlet Inv	, projecting, no headwall, Ke= rert= 266.71' / 265.22' S= 0.0 gated PP, smooth interior, Flo	100 '/' Cc= 0.900
	et Controls 4.49 cfs @ 3.66 fps)	=200.20 (Free Discharge)	
	Pond	omh7: DMH7	
	Hydrogr	aph	
5	4.56 cfs 4.56 cfs	Inflow Area=87	
		Peak Elev=	

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

Flow (cfs)

15.0"

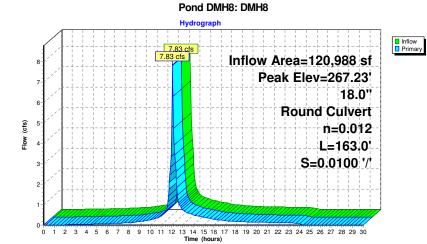
n=0.012

L=149.0'

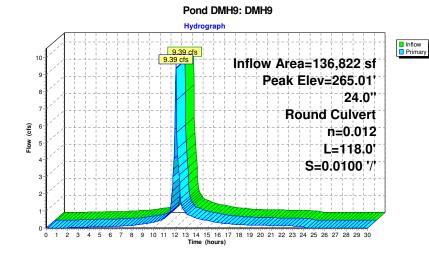
S=0.0100 '/'

Round Culvert

Proposed HydroCAD	Type III 24-hr	10-Year Rainfall=4.50"
Prepared by Microsoft		Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881	© 2016 HydroCAD Software Solutions LLC	Page 83


Summary for Pond DMH8: DMH8

Inflow Area =	120,988 sf, 69.14% Impervious,	Inflow Depth = 2.69" for 10-Year event
Inflow =	7.83 cfs @ 12.09 hrs, Volume=	27,079 cf
Outflow =	7.83 cfs @ 12.09 hrs, Volume=	27,079 cf, Atten= 0%, Lag= 0.0 min
Primary =	7.83 cfs @ 12.09 hrs, Volume=	27,079 cf


Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 267.23' @ 12.09 hrs Flood Elev= 269.88'

Device Routing	Invert	Outlet Devices
		18.0" Round Culvert L= 163.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 265.12' / 263.49' S= 0.0100 '/ Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=7.68 cfs @ 12.09 hrs HW=267.18' (Free Discharge) 1=Culvert (Inlet Controls 7.68 cfs @ 4.34 fps)

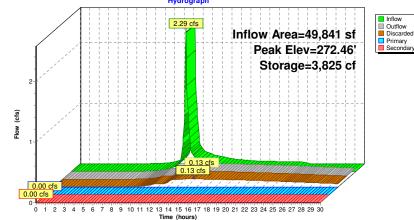
Proposed HydroCAD Prepared by Microsoft HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solut	Type III 24-hr 10-Year Rainfall=4.50" Printed 12/23/2019 ions LLC Page 84					
Summary for Pond DM	Summary for Pond DMH9: DMH9					
Outflow = 9.39 cfs @ 12.09 hrs, Volume= 3	32,706 cf 32,706 cf, Atten= 0%, Lag= 0.0 min 32,706 cf					
Device Routing Invert Outlet Devices						
#1 Primary 263.38' 24.0" Round Culvert L= 118.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 263.38' / 262.20' S= 0.0100 '/ Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 3.14 sf						
Primary OutFlow Max=9.19 cfs @ 12.09 hrs HW=264.98' (Free Discharge) ←1=Culvert (Inlet Controls 9.19 cfs @ 3.40 fps)						

Proposed HydroCAD	Type III 24-hr 10-Year Rai	nfall=4.50"
Prepared by Microsoft	Printed	12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 20	6 HydroCAD Software Solutions LLC	Page 85

Summary for Pond DP1: Pond #1

Inflow Area =	49,841 sf, 50.39% Impervious,	Inflow Depth = 1.79" for 10-Year event
Inflow =	2.29 cfs @ 12.09 hrs, Volume=	7,451 cf
Outflow =	0.13 cfs @ 14.69 hrs, Volume=	7,223 cf, Atten= 94%, Lag= 155.5 min
Discarded =	0.13 cfs @ 14.69 hrs, Volume=	7,223 cf
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 272.46' @ 14.69 hrs Surf.Area= 2,339 sf Storage= 3,825 cf Flood Elev= 275.00' Surf.Area= 4,336 sf Storage= 12,246 cf


Plug-Flow detention time= 342.3 min calculated for 7,211 cf (97% of inflow) Center-of-Mass det. time= 325.0 min (1,154.6 - 829.6)

Volume	Invert	Avail.Sto	rage Storage [Description		
#1	270.00'	12,24	16 cf Custom S	Stage Data (Conic) Listed below (Recal	c)
Elevatio	n Su	rf.Area	Inc.Store	Cum.Store	Wet.Area	
(fee	t)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)	
270.0	00	878	0	0	878	
271.0	00	1,400	1,129	1,129	1,413	
272.0	00	2,026	1,703	2,832	2,056	
273.0	00	2,742	2,375	5,207	2,793	
274.0	00	3,515	3,121	8,328	3,591	
275.0	00	4,336	3,918	12,246	4,441	
Device	Routing	Invert	Outlet Devices	i		
#1	Primary	270.28'	12.0" Round (Culvert		
	-		Inlet / Outlet In	vert= 270.28' / 26	neadwall, Ke= 0.900 9.12' S= 0.0100 '/' 0 h interior, Flow Area:	
#2	Device 1	273.80'	24.0" x 24.0" ⊦	loriz. Top Grate		
			C= 0.600 in 24	1.0" x 24.0" Grate	(100% open area)	
				flow at low heads		
#3	Secondary	274.50'			d-Crested Rectangula	
					0 1.00 1.20 1.40 1.	
	D ¹	070.001			2.69 2.68 2.69 2.67	2.64
#4	Discarded	270.00'	2.410 in/hr Ext	iltration over Wet	ted area	
Discarded OutFlow Max=0.13 cfs @ 14.69 hrs HW=272.46' (Free Discharge) ¹ —4=Exfiltration (Exfiltration Controls 0.13 cfs)						

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=270.00' (Free Discharge) 1=Culvert (Controls 0.00 cfs) 2=Top Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=270.00' (Free Discharge)

Proposed HydroCAD Type III 24-hr 10-Year Rainfall=4.50" Prepared by Microsoft HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Printed 12/23/2019

Summary for Pond DP2: Pond #2

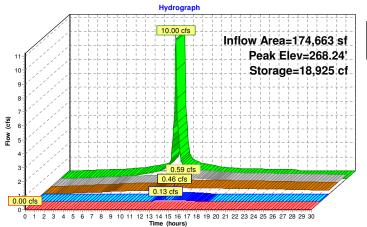
Page 87

Inflow Area =	174,663 sf, 72.49% Impervious,	Inflow Depth = 2.49" for 10-Year event
Inflow =	10.00 cfs @ 12.09 hrs, Volume=	36,282 cf
Outflow =	0.59 cfs @ 13.82 hrs, Volume=	32,724 cf, Atten= 94%, Lag= 104.2 min
Discarded =	0.46 cfs @ 13.82 hrs, Volume=	30,785 cf
Primary =	0.13 cfs @ 13.82 hrs, Volume=	1,940 cf
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 268.24' @ 13.82 hrs Surf.Area= 8,156 sf Storage= 18,925 cf Flood Elev= 270.00' Surf.Area= 11,000 sf Storage= 35,778 cf

Plug-Flow detention time= 361.6 min calculated for 32,670 cf (90% of inflow) Center-of-Mass det. time= 312.7 min (1,064.3 - 751.6)

Volume	Inve	rt Avail.Sto	rage	Storage	Description		
#1	265.0	0' 35,7	78 cf	Custom	Stage Data (Con	ic) Listed below (R	ecalc)
Elevatio		Surf.Area		Store	Cum.Store	Wet.Area	
(fee		(sq-ft)	(cubic-		(cubic-feet)	(sq-ft)	
265.0		3,792		0	0	3,792	
266.0		4,968		,367	4,367	4,991	
267.0		6,299		,620	9,987	6,348	
268.0		7,785		,029	17,016	7,864	
269.0	00	9,393	8	,576	25,592	9,505	
270.0	00	11,000	10	,186	35,778	11,151	
Device	Routing	Invert	Outlet	Device	S		
#1	Primary	265.00'	12.0"	Round	Culvert		
	a.y	200100	L= 23 Inlet /	.0' CM Outlet I	P, projecting, no nvert= 265.00' / 2	headwall, Ke= 0.90 264.77' S= 0.0100 oth interior, Flow A	'/' Cc= 0.900
#2	Device 1	267.80'	3.0'' \	ert. Ori	fice C= 0.600		
#3	Device 1	269.40'	C= 0	600 in 2	Horiz. Top Grate 24.0" x 24.0" Grat	e (100% open area	l)


			Limited to weir flow at low heads
#4	Secondary	269.50'	10.0' long x 10.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64
#5	Discarded	265 00'	2.410 in/hr Exfiltration over Wetted area

Proposed HydroCAD	Type III 24-hr	10-Year Rainfall=4.50"
Prepared by Microsoft		Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LL	C	Page 88

Discarded OutFlow Max=0.46 cfs @ 13.82 hrs HW=268.24' (Free Discharge) 5=Exfiltration (Exfiltration Controls 0.46 cfs)

Primary OutFlow Max=0.13 cfs @ 13.82 hrs HW=268.24' (Free Discharge) □ 1=Culvert (Passes 0.13 cfs of 4.94 cfs potential flow) □ 2=Orifice (Orifice Controls 0.13 cfs @ 2.70 fps) -3=Top Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=265.00' (Free Discharge)

Pond DP2: Pond #2

Inflow Outflow Discarded Primary Secondary

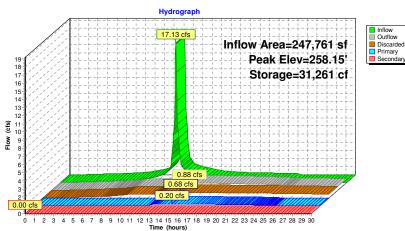
Proposed HydroCAD Type III 24-hr 10-Year Rainfall=4.50" Prepared by Microsoft HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Printed 12/23/2019 Page 89

Summary for Pond DP3: Pond #3

Inflow Area =	247,761 sf, 71.90% Impervious,	Inflow Depth = 2.95" for 10-Year event
Inflow =	17.13 cfs @ 12.09 hrs, Volume=	60,984 cf
Outflow =	0.88 cfs @ 14.49 hrs, Volume=	56,060 cf, Atten= 95%, Lag= 144.3 min
Discarded =	0.68 cfs @ 14.49 hrs, Volume=	48,773 cf
Primary =	0.20 cfs @ 14.49 hrs, Volume=	7,286 cf
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 258.15' @ 14.49 hrs Surf.Area= 12,010 sf Storage= 31,261 cf Flood Elev= 260.00' Surf.Area= 14,828 sf Storage= 55,948 cf

Plug-Flow detention time= 357.4 min calculated for 55,966 cf (92% of inflow) Center-of-Mass det. time= 314.9 min (1,084.4 - 769.5)


Volume	Invert	Avail.Sto	rage Storage	Description		
#1	255.00'	55,94	18 cf Custom	Stage Data (Conic	c) Listed below (F)	Recalc)
Elevatio (fee		rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
255.0	/	7,916	0	0	7,916	
256.0		9,155	8,528	8,528	9,197	
257.0	00	10,449	9,795	18,323	10,538	
258.0		11,800	11,118	29,441	11,940	
259.0		13,208	12,497	41,938	13,403	
260.0	00	14,828	14,010	55,948	15,076	
Device	Routing	Invert	Outlet Device	S		
#1	Primary	255.00'	12.0" Round			
				P, projecting, no he nvert= 255.00' / 25		
			n= 0.012 Cor	rugated PP, smoot	h interior, Flow	Area= 0.79 sf
#2	Device 1	256.50'		fice C= 0.600		
#3	Device 1	259.80'		Horiz. Top Grate		
				24.0" x 24.0" Grate		a)
	. .			ir flow at low heads		
#4	Secondary	259.90'		10.0' breadth Broa		
				0.20 0.40 0.60 0.8 1) 2.49 2.56 2.70		
#5	Discarded	255.00'		filtration over We		2.07 2.04

Proposed HydroCAD	Type III 24-hr	10-Year Rainfall=4.50"
Prepared by Microsoft		Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions	LLC	Page 90

Discarded OutFlow Max=0.68 cfs @ 14.49 hrs HW=258.15' (Free Discharge) 5=Exfiltration (Exfiltration Controls 0.68 cfs)

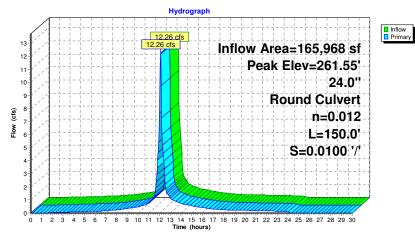
Primary OutFlow Max=0.20 cfs @ 14.49 hrs HW=258.15' (Free Discharge) □=Culvert (Passes 0.20 cfs of 4.86 cfs potential flow) □=2=Orifice (Orifice Controls 0.20 cfs @ 5.99 fps) -3=Top Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=255.00' (Free Discharge)

Pond DP3: Pond #3

Proposed HydroCAD	Type III 24-hr	10-Year Rainfall=4.50"
Prepared by Microsoft		Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 ©	2016 HydroCAD Software Solutions LLC	Page 91

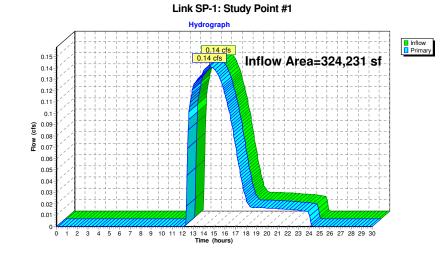
Summary for Pond WQU1: WQU1


Inflow Area =	165,968 sf, 77.51% Impervious,	Inflow Depth = 3.11" for 10-Year event
Inflow =	12.26 cfs @ 12.09 hrs, Volume=	43,062 cf
Outflow =	12.26 cfs @ 12.09 hrs, Volume=	43,062 cf, Atten= 0%, Lag= 0.0 min
Primary =	12.26 cfs @ 12.09 hrs, Volume=	43,062 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 261.55' @ 12.09 hrs Flood Elev= 268.90'

Device	Routing	Invert	Outlet Devices
	Primary		24.0" Round Culvert L= 150.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 259.50' / 258.00' S= 0.0100 '/ Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=11.96 cfs @ 12.09 hrs HW=261.50' (Free Discharge) 1=Culvert (Inlet Controls 11.96 cfs @ 3.81 fps)

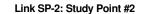

HydroCAD® 10.	00-18 s/n 02881 © 2016 HydroCAD Softw	vare Solutions LLC P
	Summary for Po	ond WQU2: WQU2
Inflow Area =		Inflow Depth = 2.35" for 10-Year event
Inflow = Outflow =	2.29 cfs @ 12.09 hrs, Volume= 2.29 cfs @ 12.09 hrs, Volume=	
Primary =	2.29 cfs @ 12.09 hrs, Volume=	7,337 cf
	r-Ind method, Time Span= 0.00-30.00 I	nrs, dt= 0.05 hrs
Peak Elev= 27 Flood Elev= 27	2.87' @ 12.09 hrs ′5.35'	
Device Routi	ng Invert Outlet Devices	
#1 Prima	•	vert
		ojecting, no headwall, Ke= 0.900
		te 272.00' / 271.50' S= 0.0100 '/' Cc= 0.900 ted PP, smooth interior, Flow Area= 1.23 sf
Drimon OutEl	ow Max=2.26 cfs @ 12.09 hrs HW=27	72.961 (Erec Discharge)
	Inlet Controls 2.26 cfs @ 2.50 fps)	2.00 (Free Discharge)
	Den d WC	
		QU2: WQU2
Λ	Hydrograph	
	2.29 cfs	Influence in the second s
	2.29 cfs	Inflow Area=37,533 sf
		Peak Elev=272.87'
2-1		15.0"
		Round Culvert
cts)		n=0.012
Flow (cfs)	+-+-+-+-+-+-+-+-+-+-+-+++++	
ш 1-ѓ		L=50.0'
		S=0.0100 '/'
-		
0 1 2	3 4 5 6 7 8 9 10 11 12 13 14 15 16	17 18 19 20 21 22 23 24 25 26 27 28 29 30
	Time (hours)

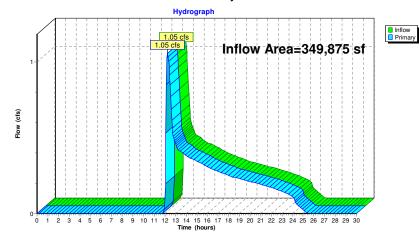
Proposed HydroCAD	Type III 24-hr 10-Year Rainfall=4.50"	
Prepared by Microsoft	Printed 12/23/2019	
HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions I	LLC Page 93	

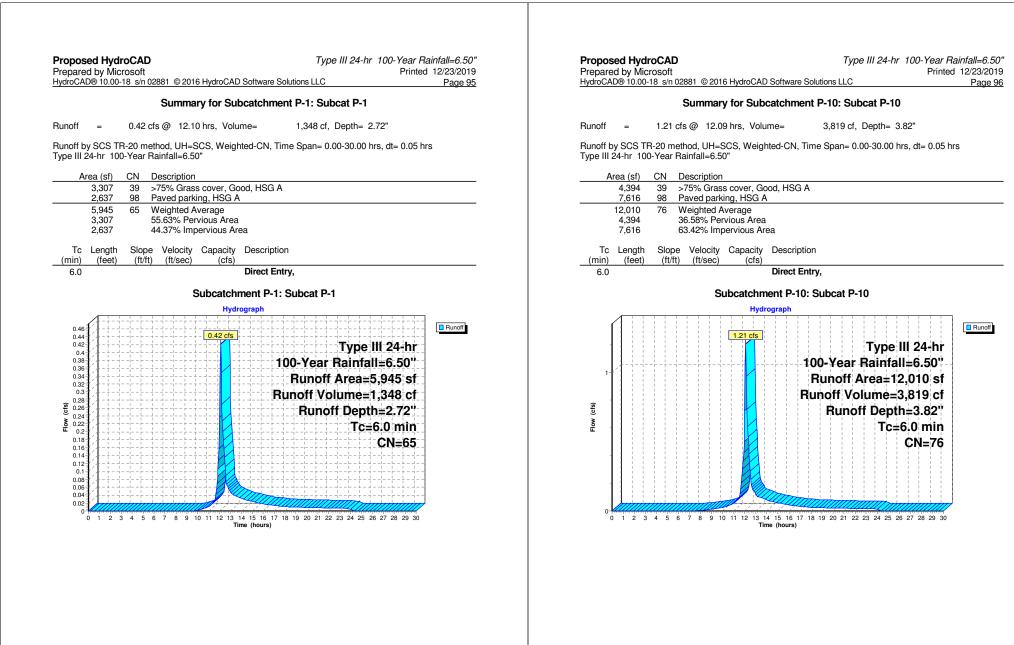
Summary for Link SP-1: Study Point #1

Inflow Area =	324,231 sf, 39.05% Impervious, Inflow Depth = 0.09" for 10-Year event
Inflow =	0.14 cfs @ 14.56 hrs, Volume= 2,534 cf
Primary =	0.14 cfs @ 14.56 hrs, Volume= 2,534 cf, Atten= 0%, Lag= 0.0 min

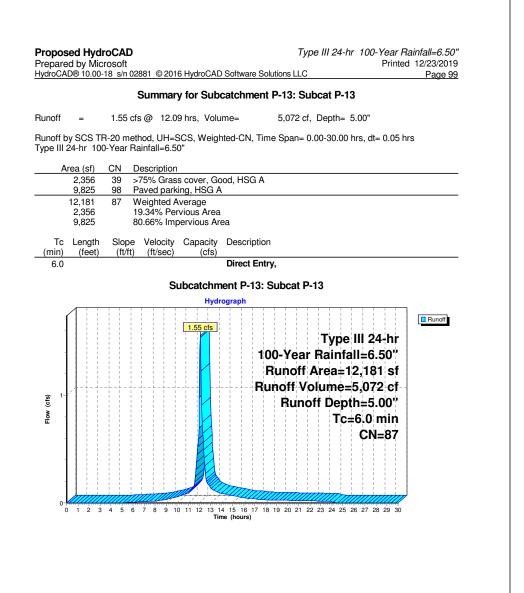
Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

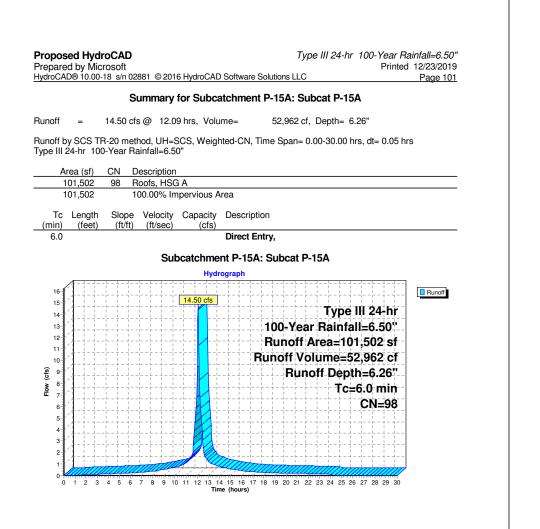


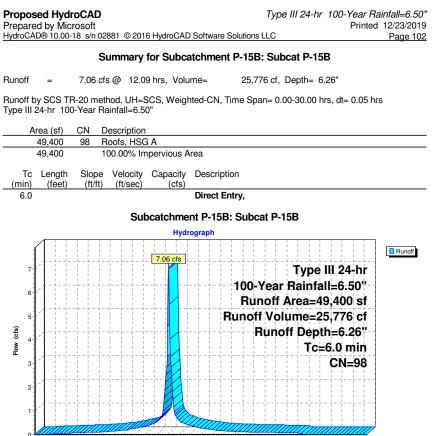

Proposed HydroCAD	Type III 24-hr 10-Year Rainfall=4.50"
Prepared by Microsoft	Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Softwa	are Solutions LLC Page 94


Summary for Link SP-2: Study Point #2

Inflow Area =	349,875 sf, 50.91% Impervious,	Inflow Depth = 0.44"	for 10-Year event
Inflow =	1.05 cfs @ 12.25 hrs, Volume=	12,742 cf	
Primary =	1.05 cfs @ 12.25 hrs, Volume=	12,742 cf, Atten	= 0%, Lag= 0.0 min

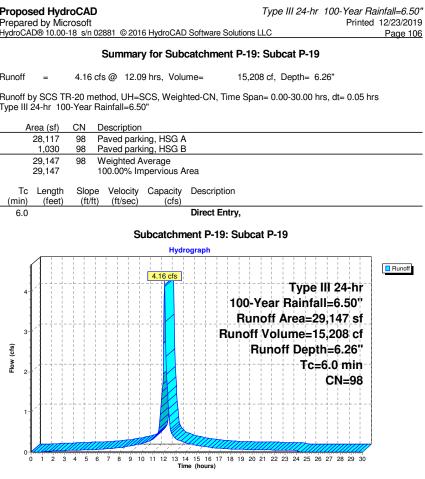

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

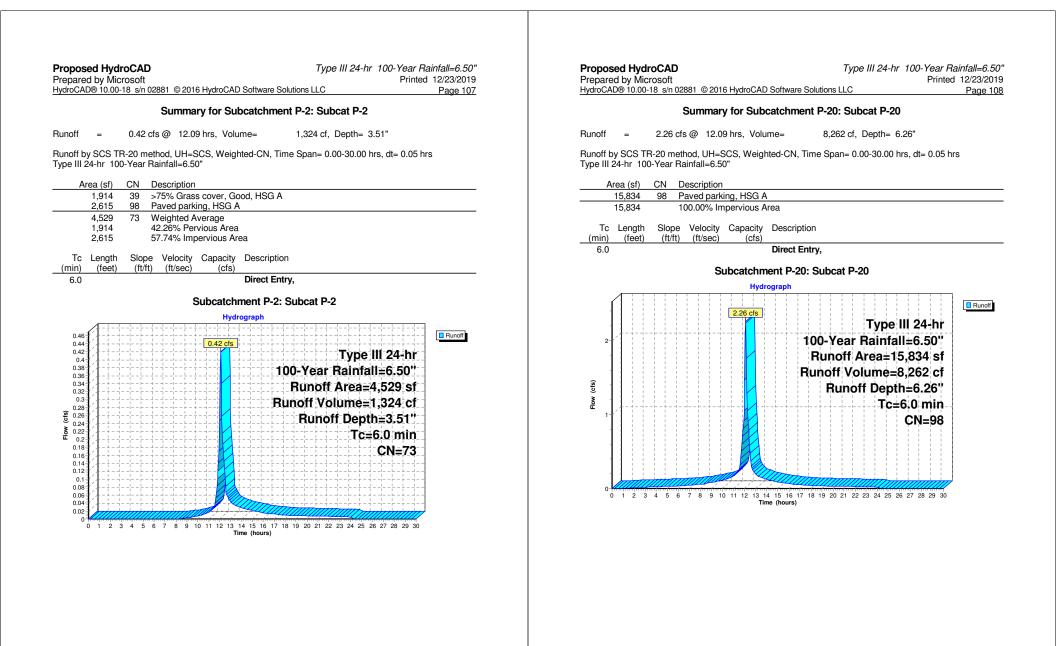


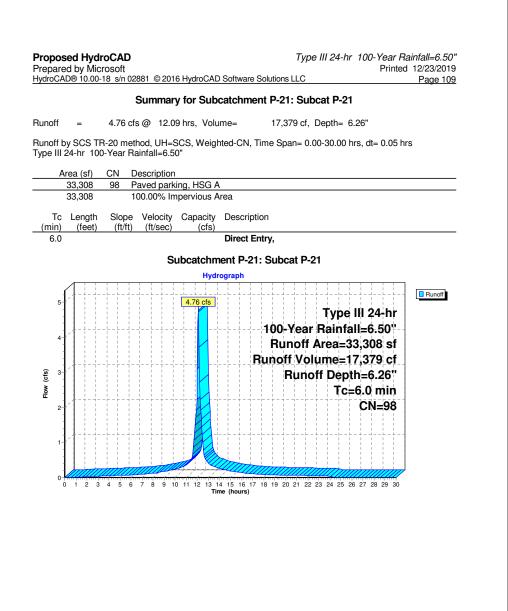


Proposed HydroCAD Type III 24-hr 100-Year Rainfall=6.50" Prepared by Microsoft Printed 12/23/2019 HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Page 97	Proposed HydroCAD Type III 24-hr 100-Year Rainfall=6.5 Prepared by Microsoft Printed 12/23/20 HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Page 5
Summary for Subcatchment P-11: Subcat P-11	Summary for Subcatchment P-12: Subcat P-12
unoff = 0.49 cfs @ 12.42 hrs, Volume= 5,215 cf, Depth= 0.42"	Runoff = 2.26 cfs @ 12.09 hrs, Volume= 7,925 cf, Depth= 5.91"
unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs ype III 24-hr 100-Year Rainfall=6.50"	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.50"
Area (sf) CN Description	Area (sf) CN Description
35,319 39 >75% Grass cover, Good, HSG A 93,727 30 Woods, Good, HSG A	949 39 >75% Grass cover, Good, HSG A 15,146 98 Paved parking, HSG A
20,521 55 Woods, Good, HSG B 149,568 36 Weighted Average 149,568 100.00% Pervious Area	16,09595Weighted Average9495.90% Pervious Area15,14694.10% Impervious Area
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
8.6 50 0.2000 0.10 Sheet Flow, Woods: Dense underbrush n= 0.800 P2= 3.16"	6.0 Direct Entry,
0.5 72 0.2000 2.24 Shallow Concentrated Flow, Woodland Ky= 5.0 fps	Subcatchment P-12: Subcat P-12
Subcatchment P-11: Subcat P-11	(9) 9) 9) 9) 9) 9) 9) 9) 9) 9)

Proposed HydroCAD Prepared by Microsoft HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solution	Type III 24-hr 100-Year Rainfall=6.50" Printed 12/23/2019 ns LLC Page 100
Summary for Subcatchment P-	14: Subcat P-14
Runoff = 0.08 cfs @ 12.29 hrs, Volume=	613 cf, Depth= 0.60"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time S Type III 24-hr 100-Year Rainfall=6.50"	pan= 0.00-30.00 hrs, dt= 0.05 hrs
Area (sf) CN Description	
12,257 39 >75% Grass cover, Good, HSG A 51 98 Paved parking, HSG A	
12,30839Weighted Average12,25799.59% Pervious Area510.41% Impervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry,	
Subcatchment P-14: Sub	ocat P-14
Hydrograph	
0.085	
0.075	Type III 24-hr
	Year Rainfall=6.50"
· · · · · · · · · · · · · · · · · · ·	noff Area=12,308 sf
	noff Volume=613 cf
	Runoff Depth=0.60''
	Tc=6.0-min
0.03	CN=39
0.025	
0.015	
0.01	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Time (hours)	20 21 22 23 24 25 26 27 28 29 30

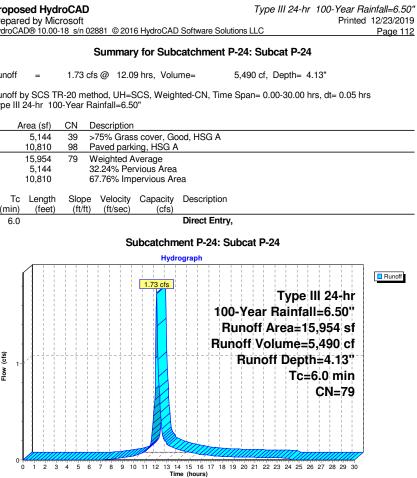


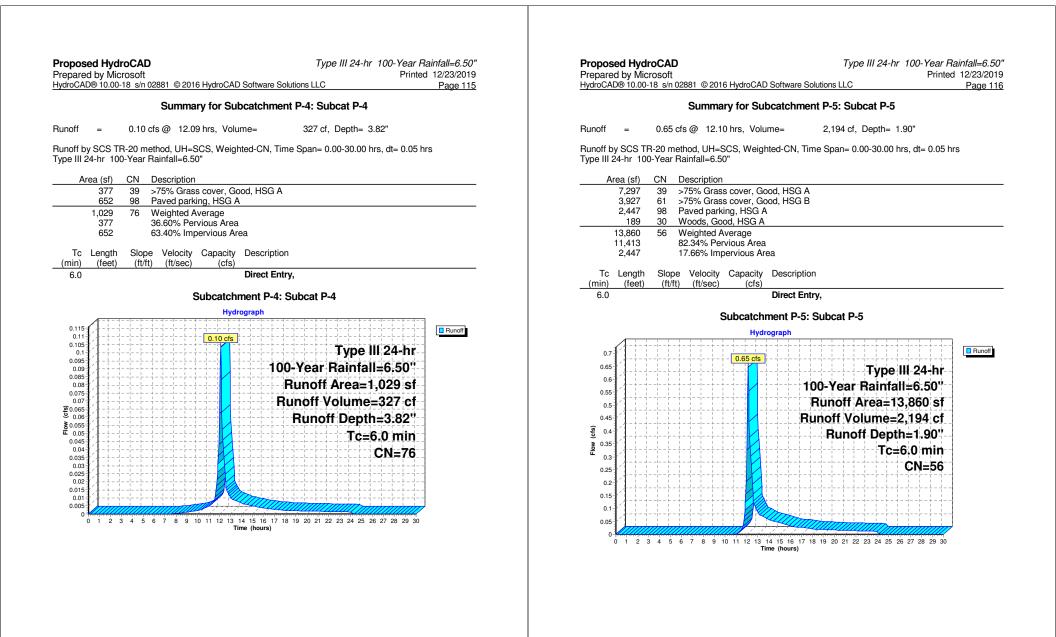



^{0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30} Time (hours)

roposed HydroCAD Type III 24-hr 100-Year Rainfall=6.50" repared by Microsoft Printed 12/23/2019 rdroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Page 103	Proposed HydroCAD Type III 24-hr 100-Year Rainfall=6.50 Prepared by Microsoft Printed 12/23/201 HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Page 10
Summary for Subcatchment P-16: Subcat P-16	Summary for Subcatchment P-17: Subcat P-17
unoff = 0.24 cfs @ 12.15 hrs, Volume= 1,787 cf, Depth= 0.66"	Runoff = 0.15 cfs @ 12.29 hrs, Volume= 1,162 cf, Depth= 0.60"
unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs pe III 24-hr 100-Year Rainfall=6.50"	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.50"
Area (sf) CN Description	Area (sf) CN Description
31,821 39 >75% Grass cover, Good, HSG A 472 61 >75% Grass cover, Good, HSG B	23,320 39 >75% Grass cover, Good, HSG A 23,320 100.00% Pervious Area
99 98 Paved parking, HSG A	23,320 100.00% Pervious Area
1 98 Paved parking, HSG B	Tc Length Slope Velocity Capacity Description
32,392 40 Weighted Average 32,292 99.69% Pervious Area	(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry,
100 0.31% Impervious Area	o.o Direct Entry,
To Longth Clans Valentin Consein Description	Subcatchment P-17: Subcat P-17
Tc Length Slope Velocity Capacity Description min) (feet) (ft/ft) (ft/sec) (cfs)	Hydrograph
6.0 Direct Entry,	0.16 0 I I I I I I I I I I I I I I I I I I
Subcatchment P-16: Subcat P-16	0.15 cfs 100-Year Rainfall ±6.50' Runoff Area ±23,320 sf Runoff Depth ±0.60' Tc ±6.0 min CN=39 0.05 0

	d by Mic		2881 © 2016	6 HydroCAE	Type III 24-hr 100-Year Rainfall=6. Printed 12/23/20 D Software Solutions LLC Page 1	19 Prepared by Mic
			Summary	for Sub	catchment P-18: Subcat P-18	
Runoff	=	3.21 cf	s@ 12.19	9 hrs, Volu	ume= 13,983 cf, Depth= 1.64"	Runoff =
			thod, UH=S ainfall=6.50		hted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs	Runoff by SCS TI Type III 24-hr 100
	rea (sf)		Description			Area (sf)
	23,317 41,898 5,189 31,710	61 > 30 \		s cover, Go od, HSG A		
1	02,115	53 V	Veighted A	verage		
	02,115 Length (feet)		Velocity (ft/sec)			Tc Length (min) (feet) 6.0
11.4	50	0.1000	0.07	()	Sheet Flow,	-
0.8	70	0.0800	1.41		Woods: Dense underbrush n= 0.800 P2= 3.16" Shallow Concentrated Flow, Woodland Kv= 5.0 fps	
12.2	120	Total				- []
			Su		nent P-18: Subcat P-18 rograph Type III-24-hr 100-Year Rainfall=6.50" Runoff Area=102,115 sf Runoff Volume=13,983 cf Runoff Depth=1.64" Flow Length=120' Tc=12.2 min CN=53	




Proposed HydroCAD Type III 24-hr 100-Year F Prepared by Microsoft Printe HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC	Rainfall=6.50" d 12/23/2019 Page 110
Summary for Subcatchment P-22: Subcat P-22	
Runoff = 1.24 cfs @ 12.10 hrs, Volume= 3,951 cf, Depth= 2.82"	
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 h Type III 24-hr 100-Year Rainfall=6.50"	nrs
Area (sf) CN Description	
9,035 39 >75% Grass cover, Good, HSG A 7,796 98 Paved parking, HSG A	
16.831 66 Weighted Average	
9,035 53.68% Pervious Area	
7,796 46.32% Impervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry,	
Subcatchment P-22: Subcat P-22	
(g 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 (g) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 (g) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 (g) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 (g) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 (g) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 (g) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 (g) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 (g) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 (g) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 (g) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 29 24 25 26 27 28 29 30 (g) 0 1 2 3 2 4 25 26 27 28 29 30 (g) 0 1 2 3 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 (g) 0 1 2 3 2 4 25 26 27 28 29 30 (g) 0 1 2 3 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 29 24 25 26 27 28 29 30 (g) 0 1 2 3 2 4 25 26 27 28 29 30 (g) 0 1 2 3 2 4 25 26 27 28 29 30 (g) 0 1 2 3 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 20 24 25 26 27 28 29 30 (g) 0 1 2 3 2 4 25 26 27 28 29 30 (g) 0 1 2 3 2 4 25 26 27 28 29 30 (g) 0 1 2 3 2 4 25 26 27 28 29 30 (g) 0 1 2 3 2 4 25 26 27 28 29 30 (g) 0 1 2 3 2 4 25 26 27 28 29 30 (g) 0 1 2 3 2 4 25 26 27 28 29 30 (g) 0 1 2 3 2 4 25 26 27 28 29 30 (g) 0 1 2 3 2 4 25 26 27 28 29 30 (g) 0 1 2 3 2 4 25 26 27 28 29 30 (g) 0 1 2 3 2 4 25 26 27 28 29 30 (g) 0 1 2 3 2 4 25 26 27 28 29 30 (g) 0 1 2 3 2 4 25 26 27 28 29 30 (g) 0 1 2 3 2 4 25 26 27 28 20 30 (g) 0 1 2 3 2 4 25 26 27 28 20 30 (g) 0 1 2 3 2 4 25 26 27 28 20 30 (g) 0 1 2 3 2 4 25 26 27 28 20 30 (g) 0 1 2 3 2 3 2 4 25 20 20 20 20 20 20 20 20 20 20 20 20 20	Runoff
Time (hours)	

HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Page 111 Summary for Subcatchment P-23: Subcat P-23	HydroCAD® 10.00-18 s/n 02881 © 20
•	
Runoff = 0.73 cfs @ 12.09 hrs, Volume= 2,323 cf, Depth= 3.92"	Runoff = 1.73 cfs @ 12
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.50"	Runoff by SCS TR-20 method, UH Type III 24-hr 100-Year Rainfall=6
Area (sf) CN Description	Area (sf) CN Description
2,239 39 >75% Grass cover, Good, HSG A 448 61 >75% Grass cover, Good, HSG B	5,144 39 >75% Gr 10,810 98 Paved pa
4,427 98 Paved parking, HSG A	15,954 79 Weighted
7,114 77 Weighted Average 2,687 37.77% Pervious Area	5,144 32.24% F 10,810 67.76% I
4,427 62.23% Impervious Area	Tc Length Slope Veloci
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	(min) (feet) (ft/ft) (ft/see
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry,	6.0
Subcatchment P-23: Subcat P-23	
Hydrograph	
0.8 0.75 0.75 0.75 0.65 0.65 0.55 0	

repare	ed Hyd d by Mic	rosoft		16 HydroCAE	21	24-hr 100-Year R Printed	d 12/23/2019	
JUIUCA	D@ 10.00-	10 5/11				P-25: Subcat	P-25	Page 113
Runoff	=	0.50	cfs @ 12.	09 hrs, Volu	ime=	1,597 cf, Dep	th= 3.92"	
			ethod, UH= Rainfall=6.		nted-CN, Tim	ne Span= 0.00-30	0.00 hrs, dt= 0.05 h	rs
,								
A	rea (sf) 1.767	<u>CN</u> 39	Descriptio	n ss cover, Go	od HSG A			
	3,123	98	Paved pa	king, HSG A				
	4,890 1.767	77	Weighted 36.14% P	Average ervious Area				
	3,123		63.86% In	pervious Ar	ea			
Тс	Length	Slop			Description	ı		
(min) 6.0	(feet)	(ft/f	t) (ft/sec) (cfs)	Direct Entr	v		
0.0								
			9	Subcatchm	nent P-25: \$	Subcat P-25		
				Hydi	rograph			1
0.55				0.50 cfs				Runoff
0.5							pe III 24-hr	
0.45					10	0-Year Rai	nfall=6.50"	
0.4							ea=4,890 sf	
0.35					Ru		ne=1,597 cf	
(cls) 0.3					 L		epth=3.92''	
ନ୍ଥି 0.25							Tc=6.0 min	
0.2			+		+		CN=77	
0.15								
0.1								
0.05					1000m			
0		3 4 5	6789				4 25 26 27 28 29 30	

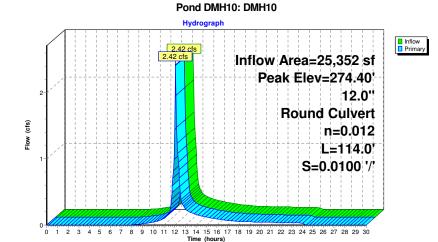
	ed by M D® 10.0			6 HydroCAD	Softwa	are Solutions LLC	Printed 12/23/201 Page 11
			Summa	ry for Sul	ocatcl	hment P-3: Subcat P-3	_
unoff	=	0.11	cfs @ 12.1	0 hrs, Volu	me=	348 cf, Depth= 2.91"	
unoff b	y SCS	[R-20 m	ethod, UH=S	SCS, Weigh	nted-Cl	N, Time Span= 0.00-30.00 hrs, dt	= 0.05 hrs
ype III	24-hr 1	00-Year	Rainfall=6.5	0"		· · ·	
A	rea (sf)	CN	Description				
	742 692	39 98	>75% Gras Paved park			SG A	
	1,434	67	Weighted A	verage			
	742 692		51.75% Per 48.25% Imp				
Тс	Length	I Slop	e Velocity	Capacity	Desc	ription	
(min)	(feet			(cfs)		•	
6.0					Direc	t Entry,	
			5	Subcatchi	ment	P-3: Subcat P-3	
				Hydr	ograph		
0.12	$\left\{ \left \right\rangle \right\}$						
0.11	11			- 0.11 cfs		Type III 2	4-hr
0.1	1		-+++			100-Year Rainfall=6	
0.09	*/ _ _ _ _ _		- + - + - + - +			Runoff Area=1,43	
0.08	₹_}		- + + - +			Runoff Volume=34	
(cts) 0.07 0.06	Ĩ,{-¦-					Runoff Depth=2	
0.00]/{-+-					Tc=6.0	
0.04	<u></u>],∤-†-		- +				=67
0.03	∕ -+-		- + + +				
0.02	11						+
0.01	ł						
0	0 1 2	3 4 5	6 7 8 9	10 11 12 13	14 15 10	6 17 18 19 20 21 22 23 24 25 26 27 2	28 29 30
	-	-			me (hou		

		crosoft Printed 12/23/2019 -18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Page 117	Pre Hyd
		Summary for Subcatchment P-7: Subcat P-7	
Runoff	=	0.54 cfs @ 12.09 hrs, Volume= 1,709 cf, Depth= 3.71"	Rur
		R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs 0-Year Rainfall=6.50"	Rur Typ
A	rea (sf)	CN Description	
	2,121 3,402	 39 >75% Grass cover, Good, HSG A 98 Paved parking, HSG A 	
	5,524	75 Weighted Average	
	2,121	38.41% Pervious Area	
	3,402	61.59% Impervious Area	
Tc	Length		
(min) 6.0	(feet)	(ft/ft) (ft/sec) (cfs) Direct Entry,	
0.0		•••	
		Subcatchment P-7: Subcat P-7	
	A - +	Hydrograph	
0.6	Í L	□	
0.55			
0.5		100-Year Rainfall=6.50"	
0.45		Runoff Area=5,524 sf	
0.4		Runoff Volume=1,709 cf	
^{0.35} و			(ofe)
Llow (cfs)			, mol
ت _{0.25}	11		Ē
0.2		CN=75	
0.15	11		
0.1	11		
0.05	11		
o		3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	

Proposed HydroCAD Prepared by Microsoft łydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions I	Type III 24-hr 100-Year Rainfall=6.50" Printed 12/23/2019 LC Page 118
Summary for Subcatchment P-8:	Subcat P-8
Runoff = 0.37 cfs @ 12.09 hrs, Volume= 1,16	5 cf, Depth= 3.31"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Spar ype III 24-hr 100-Year Rainfall=6.50"	n= 0.00-30.00 hrs, dt= 0.05 hrs
Area (sf) CN Description	
1,911 39 >75% Grass cover, Good, HSG A	
2,318 98 Paved parking, HSG A 4,229 71 Weighted Average	
1,911 45.19% Pervious Area	
2,318 54.81% Impervious Area	
Tc Length Slope Velocity Capacity Description	
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry,	
0.3 0.28 0.24 0.24 0.24 0.22 0.22 0.22 0.22 0.22	nt P-8 Type III 24-hr ear Rainfall=6.50" off Area=4,229 sf Volume=1,165 cf noff Depth=3.31" Tc=6.0 min CN=71 21 22 23 24 25 26 27 28 29 30

poposed HydroCAD Type III 24-hr 100-Year Rainfall=6.50" pared by Microsoft Printed 12/23/2019 roCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Page 119	Proposed HydroCAD Type III 24-hr 100-Year Rainfall=6.50' Prepared by Microsoft Printed 12/23/2019 HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC Page 120
Summary for Subcatchment P-9: Subcat P-9	Summary for Pond DMH1: DMH1
noff = 0.30 cfs @ 12.09 hrs, Volume= 959 cf, Depth= 3.21" noff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs e III 24-hr 100-Year Rainfall=6.50" Area (sf) CN Description	Inflow Area = 10,474 sf, 50.15% Impervious, Inflow Depth = 3.06" for 100-Year event Inflow = 0.84 cfs @ 12.09 hrs, Volume= 2,672 cf Outflow = 0.84 cfs @ 12.09 hrs, Volume= 2,672 cf, Atten= 0%, Lag= 0.0 min Primary = 0.84 cfs @ 12.09 hrs, Volume= 2,672 cf Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs
1,687 39 >75% Grass cover, Good, HSG A 1,901 98 Paved parking, HSG A	Peak Elev= 284.03 (@ 12.09 hrs Flood Elev= 287.50'
3,588 70 Weighted Average	Device Routing Invert Outlet Devices
1,687 47.01% Pervious Area 1,901 52.99% Impervious Area Tc Length Slope Velocity Capacity Description min) (ft/ft) (ft/ft) (ft/sec)	#1 Primary 283.50' 12.0'' Round Culvert L= 111.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 283.50' / 280.17' S= 0.0300 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf
6.0 Direct Entry,	Primary OutFlow Max=0.83 cfs @ 12.09 hrs HW=284.03' (Free Discharge)
Subcatchment P-9: Subcat P-9	1=Culvert (Inlet Controls 0.83 cfs @ 1.96 fps)
	Pond DMH1: DMH1
0.32 0.30 cfs Type III 24-hr 0.24 100-Year Rainfall=6.50" 0.24 Runoff Area=3,588 sf 0.24 Runoff Area=3,588 sf 0.24 Runoff Area=3,588 sf 0.24 Runoff Colume=959 cf 0.18 Runoff Depth=3.21" 0.18 CN=70 0.19 CN=70 0.10 CN=70 0.11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)	Hydrograph 0.84 cts 0.84

Proposed HydroCAD	Type III 24-hr 100-Year Rainfall=6.50"
Prepared by Microsoft	Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software	Solutions LLC Page 121


Summary for Pond DMH10: DMH10

Inflow Area =	25,352 sf, 60.11% Impervious, Inflow Depth = 3.62" for 100-Year event	
Inflow =	2.42 cfs @ 12.09 hrs, Volume= 7,652 cf	
Outflow =	2.42 cfs @ 12.09 hrs, Volume= 7,652 cf, Atten= 0%, Lag= 0.0 min	
Primary =	2.42 cfs @ 12.09 hrs, Volume= 7,652 cf	

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 274.40' @ 12.09 hrs Flood Elev= 278.08'

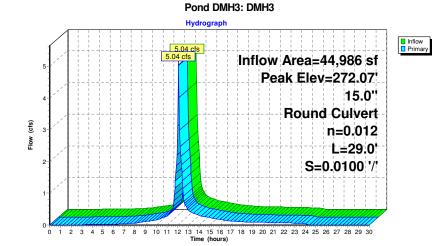
Device	Routing	Invert	Outlet Devices
#1	Primary		12.0" Round Culvert L= 114.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 273.24' / 272.10' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.38 cfs @ 12.09 hrs HW=274.37' (Free Discharge) 1=Culvert (Inlet Controls 2.38 cfs @ 3.03 fps)

	ed by Microsoft	02881 © 2016 Hydro	CAD Softw	vare Solutions L	LC	Printee	d 12/23/2019 Page 122
		Summa	ry for Po	ond DMH2: [OMH2		
nflow A nflow Dutflow Primary	= 1.05 = 1.05	2,937 sf, 50.99% lm cfs @ 12.09 hrs, cfs @ 12.09 hrs, cfs @ 12.09 hrs, cfs @ 12.09 hrs,	Volume= Volume=	3,347 3,347	' cf ' cf, Atten= 0%		
eak Ĕl	by Stor-Ind met ev= 280.66' @ 1 lev= 284.16'	hod, Time Span= 0. 2.09 hrs	.00-30.00 H	hrs, dt= 0.05 h	rs		
)evice	Routing	Invert Outlet D	evices				
		Inlet / Or	utlet Invert 2 Corruga rs HW=28	t= 280.05' / 270 ted PP, smoot	eadwall, Ke= (0.37' S= 0.080 h interior, Flov Discharge)	00 '/' Cc= 0.9	
		ſ	Pond DM	IH2: DMH2			
-low (cfs)			Hydrograph	Inflow	L=	80.66' 12.0''	Primary

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

Proposed HydroCAD	Type III 24-hr	100-Year Rainfall=6.50"
Prepared by Microsoft		Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881	© 2016 HydroCAD Software Solutions LLC	Page 123


Summary for Pond DMH3: DMH3

Inflow Area =	44,986 sf, 72.36% Impervious, Inflow Depth = 4.47" for 100-Year event	
Inflow =	5.04 cfs @ 12.09 hrs, Volume= 16,762 cf	
Outflow =	5.04 cfs @ 12.09 hrs, Volume= 16,762 cf, Atten= 0%, Lag= 0.0 min	
Primary =	5.04 cfs @ 12.09 hrs, Volume= 16,762 cf	

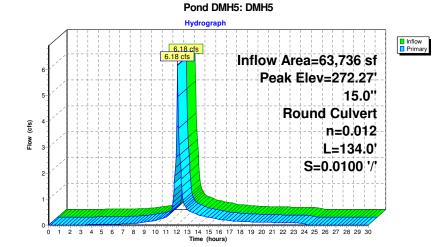
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 272.07' @ 12.09 hrs Flood Elev= 276.00'

Device	Routing	Invert	Outlet Devices
#1	Primary		15.0" Round Culvert L= 29.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 270.28' / 269.99' S= 0.0100 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.23 sf

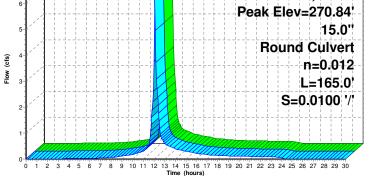
Primary OutFlow Max=4.93 cfs @ 12.09 hrs HW=272.02' (Free Discharge) 1=Culvert (Inlet Controls 4.93 cfs @ 4.02 fps)

Prepare HydroCA	D® 10.00-	8 S/N 02881	© 2016 F	HydroCAD Sof	itware So	lutions LLC	;				Page 1
			Sun	nmary for F	Pond D	MH4: DN	/IH 4				
Inflow Area = 32,049 sf, 80.99% Impervious, Inflow = 3.99 cfs @ 12.09 hrs, Volume= Outflow = 3.99 cfs @ 12.09 hrs, Volume= Primary = 3.99 cfs @ 12.09 hrs, Volume=					=	2 Depth = 13,415 c 13,415 c 13,415 c	f f, Atten=		0-Year Lag= 0.0		
Peak El)' @ 12.09 h		n= 0.00-30.00	0 hrs, dt=	= 0.05 hrs					
Device	Routing	Inve	ert Outl	let Devices							
			L= 2	25.0' CPP, p	orojecting	g, no head	wall, Ke	e= 0.90	0		
			Inlet n= (s @ 12.0	t / Outlet Inve 0.012 Corrug 09 hrs HW=	gated PP	, smooth	interior,				
		Max=3.89 c t Controls 3.	Inlet n= (s @ 12.0	0.012 Corrug 09 hrs HW=	9ated PP 272.82' 9MH4: D	, smooth (Free Dis	interior,				
			Inlet n= 0 s @ 12.0 89 cfs @	0.012 Corrug 09 hrs HW≕ 0 4.95 fps) Pond D	gated PP 272.82' MH4: D	, smooth (Free Dis MH4 flow A	interior, scharge)	Flow <i>P</i> 32,0 7=27	49 sf 2.90'	79 sf	
€_1=Cu			Inlet n= 0 s @ 12.0 89 cfs @	0.012 Corrug 09 hrs HW= 0 4.95 fps) Pond D Hydrograf 3.99 cfs	gated PP 272.82' MH4: D	, smooth (Free Dis)MH4 flow A Peal	interior, scharge) rea=:	Flow 4 32,0 1=27	49 sf 2.90' 12.0'' Ivert	79 sf	Inflow
€_1=Cu			Inlet n= 0 s @ 12.0 89 cfs @	0.012 Corrug 09 hrs HW= 0 4.95 fps) Pond D Hydrograf 3.99 cfs	gated PP 272.82' MH4: D	, smooth (Free Dis)MH4 flow A Peal	interior, scharge) rea=; Elev	Flow / 32,0 /=27 1 Cu n=0	49 sf 2.90'	79 sf	Inflow

Proposed HydroCAD	Type III 24-hr	100-Year Rainfall=6.50"
Prepared by Microsoft		Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881	© 2016 HydroCAD Software Solutions LLC	Page 125


Summary for Pond DMH5: DMH5

Inflow Area =	63,736 sf, 59.81% Impervious,	Inflow Depth = 3.87" for 100-Year event
Inflow =	6.18 cfs @ 12.09 hrs, Volume=	20,553 cf
Outflow =	6.18 cfs @ 12.09 hrs, Volume=	20,553 cf, Atten= 0%, Lag= 0.0 min
Primary =	6.18 cfs @ 12.09 hrs, Volume=	20,553 cf


Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 272.27' @ 12.09 hrs Flood Elev= 275.40'

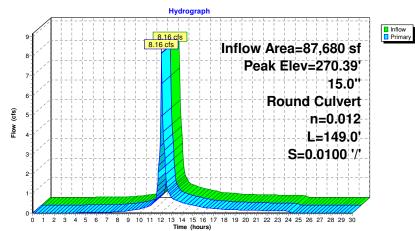
Device	Routing	Invert	Outlet Devices
#1	Primary	269.89'	15.0" Round Culvert
			L= 134.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 269.89' / 268.55' S= 0.0100 '/ Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=6.06 cfs @ 12.09 hrs HW=272.20' (Free Discharge) 1=Culvert (Inlet Controls 6.06 cfs @ 4.94 fps)

HydroCAD® 10.00-	-18 s/n 02881 © 2016 HydroCAD Software Solutions LLC	Page 126
	Summary for Pond DMH6: DMH6	
nflow Area = nflow = Dutflow = Primary =	63,736 sf, 59.81% Impervious, Inflow Depth = 3.87" for 100-Year ev 6.18 cfs @ 12.09 hrs, Volume= 20,553 cf 6.18 cfs @ 12.09 hrs, Volume= 20,553 cf, Atten= 0%, Lag= 0.0 r 6.18 cfs @ 12.09 hrs, Volume= 20,553 cf	
Routing by Stor-Ir Peak Elev= 270.8 Flood Elev= 273.8		
Device Routing	Invert Outlet Devices	
#1 Primary	 268.46' 15.0" Round Culvert L= 165.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 268.46' / 266.81' S= 0.0100 '/ Cc= 0. n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.23 	
	r Max=6.06 cfs @ 12.09 hrs HW=270.77' (Free Discharge) let Controls 6.06 cfs @ 4.94 fps)	
	Pond DMH6: DMH6	
	Hydrograph	
6	6.18 cfs 6.18 cfs Inflow Area=63,736 sf Peak Elev=270.84'	 Inflow Primary
5	15.0"	

Proposed HydroCAD	Type III 24-hr	100-Year Rainfall=6.50"
Prepared by Microsoft		Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881	© 2016 HydroCAD Software Solutions LLC	Page 127

Summary for Pond DMH7: DMH7


Inflow Area =	87,680 sf, 57.42% Impervious,	Inflow Depth = 3.67" for 100-Year event
Inflow =	8.16 cfs @ 12.09 hrs, Volume=	26,827 cf
Outflow =	8.16 cfs @ 12.09 hrs, Volume=	26,827 cf, Atten= 0%, Lag= 0.0 min
Primary =	8.16 cfs @ 12.09 hrs, Volume=	26,827 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 270.39' @ 12.09 hrs Flood Elev= 270.85'

Routing	Invert	Outlet Devices
Primary		15.0" Round Culvert L= 149.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 266.71' / 265.22' S= 0.0100 '/' Cc= 0.900
		n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=8.01 cfs @ 12.09 hrs HW=270.28' (Free Discharge) 1=Culvert (Inlet Controls 8.01 cfs @ 6.52 fps)

Pond DMH7: DMH7

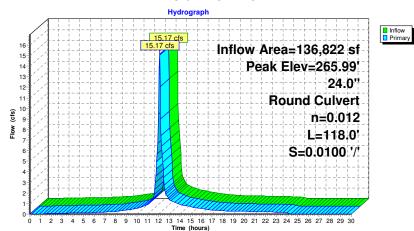
Proposed HydroCAD Prepared by Microsoft HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Softw	Type III 24-hr 100-Year Rainfall=6.50" Printed 12/23/2019 vare Solutions LLC Page 128
Summary for Pe	ond DMH8: DMH8
Inflow Area = 120,988 sf, 69.14% Impervious, Inflow = 12.91 cfs @ 12.09 hrs, Volume= Outflow = 12.91 cfs @ 12.09 hrs, Volume= Primary = 12.91 cfs @ 12.09 hrs, Volume=	Inflow Depth = 4.38" for 100-Year event 44,206 cf 44,206 cf, Atten= 0%, Lag= 0.0 min 44,206 cf
Routing by Stor-Ind method, Time Span= 0.00-30.00 Peak Elev= 269.55' @ 12.09 hrs Flood Elev= 269.88'	hrs, dt= 0.05 hrs
Inlet / Outlet Inver	vert orojecting, no headwall, Ke= 0.900 t= 265.12' / 263.49' S= 0.0100 '/' Cc= 0.900 tted PP, smooth interior, Flow Area= 1.77 sf
Primary OutFlow Max=12.63 cfs @ 12.09 hrs HW= 1=Culvert (Inlet Controls 12.63 cfs @ 7.15 fps)	269.40' (Free Discharge)
Pond DM	IH8: DMH8
Hydrograpi	+-
14 13 12,91 cfs 12,91 cfs 12,91 cfs 12,91 cfs	Inflow Area=120,988 sf Peak Elev=269.55' 18.0'' Round Culvert

Round Culvert (cfs) n=0.012 L=163.0' S=0.0100 '/* 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

No

Proposed HydroCAD	Type III 24-hr	100-Year Rainfall=6.50"
Prepared by Microsoft		Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 @	© 2016 HydroCAD Software Solutions LLC	Page 129

Summary for Pond DMH9: DMH9


Inflow Area =	136,822 sf, 72.71% Impervious,	Inflow Depth = 4.60" for 100-Year event
Inflow =	15.17 cfs @ 12.09 hrs, Volume=	52,468 cf
Outflow =	15.17 cfs @ 12.09 hrs, Volume=	52,468 cf, Atten= 0%, Lag= 0.0 min
Primary =	15.17 cfs @ 12.09 hrs, Volume=	52,468 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 265.99' @ 12.09 hrs Flood Elev= 268.83'

Device	Routing	Invert	Outlet Devices
#1	Primary	263.38'	24.0" Round Culvert L= 118.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 263.38' / 262.20' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=14.83 cfs @ 12.09 hrs HW=265.92' (Free Discharge) 1=Culvert (Inlet Controls 14.83 cfs @ 4.72 fps)

Pond DMH9: DMH9

Proposed Hyd	droCAD	Type III 24-hr	-hr 100-Year Rainfall=6.50"		
Prepared by Microsoft Printed 12/2				9	
HydroCAD® 10.0	0-18 s/n 02881 © 2016 HydroCAD Softw	16 HydroCAD Software Solutions LLC Page 130			
Summary for Pond DP1: Pond #1					
Inflow Area = Inflow =	49,841 sf, 50.39% Impervious, 4.01 cfs @ 12.09 hrs. Volume=	Inflow Depth = 3.21" for 13.337 cf	100-Year event		

11,147 cf

0 cf

0 cf

11,147 cf, Atten= 95%, Lag= 190.1 min

 Inflow
 =
 4.01 cfs @
 12.09 hrs, Volume=

 Outflow
 =
 0.19 cfs @
 15.26 hrs, Volume=

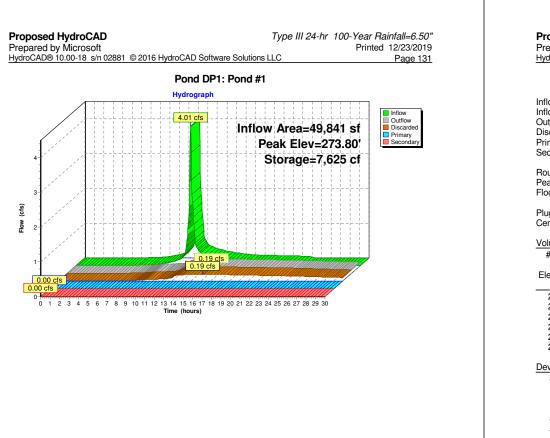
 Discarded
 =
 0.19 cfs @
 15.26 hrs, Volume=

 Primary
 =
 0.00 cfs @
 0.00 hrs, Volume=

 Secondary =
 0.00 cfs @
 0.00 hrs, Volume=

.

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 273.80' @ 15.26 hrs Surf.Area= 3,349 sf Storage= 7,625 cf Flood Elev= 275.00' Surf.Area= 4,336 sf Storage= 12.246 cf


Plug-Flow detention time= 419.8 min calculated for 11,147 cf (84% of inflow) Center-of-Mass det. time= 350.1 min (1,167.7 - 817.6)

Volume	Invert	Avail.Stor	rage Storage	Description			
#1	270.00'	12,24	46 cf Custom	Stage Data (Conic) Listed below (Red	calc)	
Elevatio		rf.Area	Inc.Store	Cum.Store	Wet.Area		
(fee	/	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)		
270.0		878	0	0	878		
271.0		1,400	1,129	1,129	1,413		
272.0	0	2,026	1,703	2,832	2,056		
273.0	0	2,742	2,375	5,207	2,793		
274.0	0	3,515	3,121	8,328	3,591		
275.0	0	4,336	3,918	12,246	4,441		
Device	Routing	Invert	Outlet Device	S			
#1	Primary	270.28'	12.0" Round	Culvert			
	-		L= 116.0' CN	IP, projecting, no h	neadwall, Ke= 0.90	0	
			Inlet / Outlet Invert= 270.28' / 269.12' S= 0.0100 '/' Cc= 0.900				
			n= 0.012 Cor	rugated PP, smoot	h interior, Flow Are	ea= 0.79 sf	
#2	Device 1	273.80'	24.0" x 24.0"	Horiz. Top Grate			
			C= 0.600 in 2	4.0" x 24.0" Grate	(100% open area)		
				r flow at low heads			
#3	Secondary	274.50'	10.0' long x 1	0.0' breadth Broad	d-Crested Rectang	ular Weir	
			Head (feet) 0	.20 0.40 0.60 0.8	0 1.00 1.20 1.40	1.60	
			Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64				
#4	Discarded	270.00'					

Discarded OutFlow Max=0.19 cfs @ 15.26 hrs HW=273.80' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.19 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=270.00' (Free Discharge) 1=Culvert (Controls 0.00 cfs) 2=Top Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=270.00' (Free Discharge)

Proposed HydroCAD	Type III 24-hr 100-Year Rainfall=6.50"
Prepared by Microsoft	Printed 12/23/2019
HvdroCAD® 10.00-18 s/n 02881 © 2016 HvdroCAD Software Solutions	LLC Page 132

Summary for Pond DP2: Pond #2

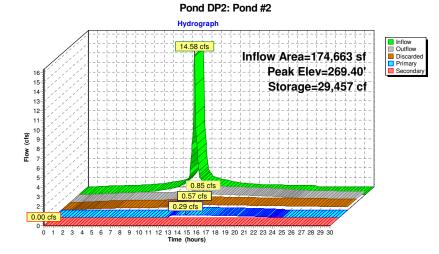
Inflow Area =	174,663 sf, 72.49% Impervious,	Inflow Depth = 3.72" for 100-Year event
Inflow =	14.58 cfs @ 12.09 hrs, Volume=	54,124 cf
Outflow =	0.85 cfs @ 13.92 hrs, Volume=	46,378 cf, Atten= 94%, Lag= 109.8 min
Discarded =	0.57 cfs @ 13.92 hrs, Volume=	37,681 cf
Primary =	0.29 cfs @ 13.92 hrs, Volume=	8,697 cf
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 269.40' @ 13.92 hrs Surf.Area= 10,018 sf Storage= 29,457 cf Flood Elev= 270.00' Surf.Area= 11,000 sf Storage= 35,778 cf

Plug-Flow detention time= 367.5 min calculated for 46,378 cf (86% of inflow) Center-of-Mass det. time= 303.0 min (1,051.3 - 748.3)

Volume	Invert	Avail.Stor	rage Storage	Description		
#1	265.00'	35,77	78 cf Custom	Stage Data (Conic	c) Listed below (Re	calc)
Elevatio (fee		rf.Area	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area	
	-7	(sq-ft)			(sq-ft)	
265.0		3,792	0	0	3,792	
266.0		4,968	4,367	4,367	4,991	
267.0		6,299	5,620	9,987	6,348	
268.0		7,785	7,029	17,016	7,864	
269.0		9,393	8,576	25,592	9,505	
270.0	0	11,000	10,186	35,778	11,151	
Device	Routing	Invert	Outlet Devices	3		
#1	Primary	265.00'	12.0" Round	Culvert		
	-		L= 23.0' CMF	P, projecting, no he	eadwall, Ke= 0.900)
			Inlet / Outlet Ir	nvert= 265.00' / 26	4.77' S= 0.0100 '/'	Cc= 0.900
			n= 0.012 Corr	rugated PP, smoot	th interior, Flow Ar	ea= 0.79 sf
#2	Device 1	267.80'	3.0" Vert. Orif	ice C= 0.600		
#3	Device 1	269.40'	24.0" x 24.0" l	Horiz. Top Grate		
			C= 0.600 in 2	4.0" x 24.0" Grate	(100% open area)	
			Limited to wei	r flow at low heads	5	
#4	Secondary	269.50'	10.0' long x 1	0.0' breadth Broa	d-Crested Rectang	ular Weir
			Head (feet) 0	.20 0.40 0.60 0.8	30 1.00 1.20 1.40	1.60
			Coef. (English) 2.49 2.56 2.70	2.69 2.68 2.69 2	.67 2.64
#5	Discarded	265.00'	2.410 in/hr Ex	filtration over We	tted area	

Proposed HydroCAD	Type III 24-hr	100-Year Rainfall=6.50"
Prepared by Microsoft		Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions	LLC	Page 133


Discarded OutFlow Max=0.57 cfs @ 13.92 hrs HW=269.40' (Free Discharge) 5=Extiltration (Extiltration Controls 0.57 cfs)

Primary OutFlow Max=0.29 cfs @ 13.92 hrs HW=269.40' (Free Discharge)

- L=Culvert (Passes 0.29 cfs of 5.89 cfs potential flow)
- -2=Orifice (Orifice Controls 0.29 cfs @ 5.84 fps)

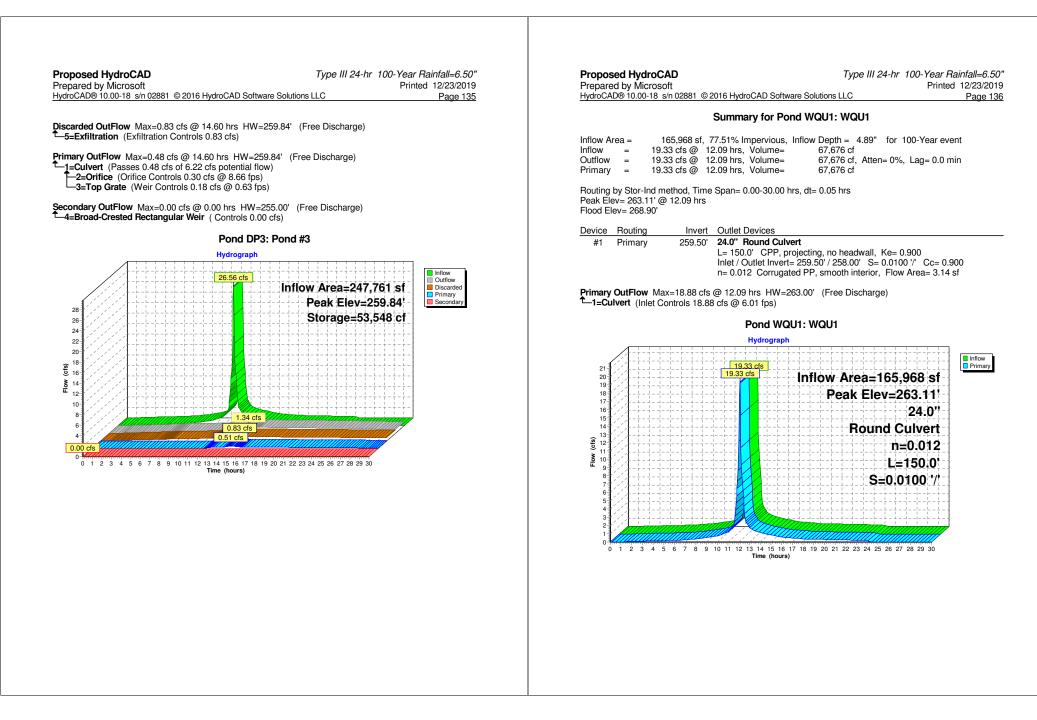
-3=Top Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=265.00' (Free Discharge)

Proposed HydroCAD Prepared by Microsoft	Type III 24-hr	100-Year Rainfall=6.50" Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions	LLC	Page 134
Summary for Pond DP3: Po	ond #3	

Inflow Area = 247,761 sf, 71.90% Impervious, Inflow Depth = 4.61" for 100-Year event Inflow = 26.56 cfs @ 12.09 hrs, Volume= Outflow = 1.34 cfs @ 14.60 hrs, Volume= Discarded = 0.83 cfs @ 14.60 hrs, Volume= Primary = 0.51 cfs @ 14.60 hrs, Volume= Secondary = 0.00 cfs @ 0.00 hrs, Volume=

60,304 cf 16,519 cf 0 cf


95.240 cf

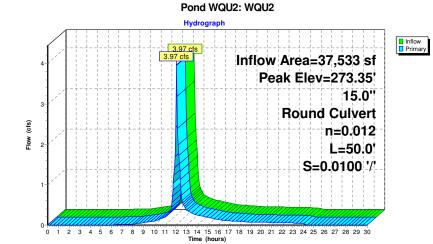
76,823 cf, Atten= 95%, Lag= 150.5 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 259.84' @ 14.60 hrs Surf.Area= 14.557 sf Storage= 53.548 cf Flood Elev= 260.00' Surf.Area= 14.828 sf Storage= 55,948 cf

Plug-Flow detention time= 410.7 min calculated for 76,823 cf (81% of inflow) Center-of-Mass det. time= 332.7 min (1,099.0 - 766.3)

Volume	Invert	Avail.Stor	rage Storage	Description		
#1	255.00'	55,94	18 cf Custom	Stage Data (Conic	Listed below (Recalc)
Elevatio		rf.Area	Inc.Store	Cum.Store	Wet.Area	
(fee	/	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)	
255.0		7,916	0	0	7,916	
256.0		9,155	8,528	8,528	9,197	
257.0	00	10,449	9,795	18,323	10,538	
258.0	00	11,800	11,118	29,441	11,940	
259.0	00	13,208	12,497	41,938	13,403	
260.0	00	14,828	14,010	55,948	15,076	
Device	Routing	Invert	Outlet Device	S		
#1	#1 Primary 255.00' 12.0'' Round Culvert L= 38.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 255.00' / 254.62' S= 0.0100 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf					
#2	Device 1	256.50'		ice C= 0.600	,	
#3	Device 1	259.80'				
#4	Secondary	259.90'	Head (feet) 0	.20 0.40 0.60 0.8	I-Crested Rectangular 0 1.00 1.20 1.40 1.6 2.69 2.68 2.69 2.67	D
#5	Discarded	255.00'		filtration over Wet		

Proposed HydroCAD	Type III 24-hr	100-Year Rainfall=6.50"
Prepared by Microsoft		Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881	© 2016 HydroCAD Software Solutions LLC	Page 137

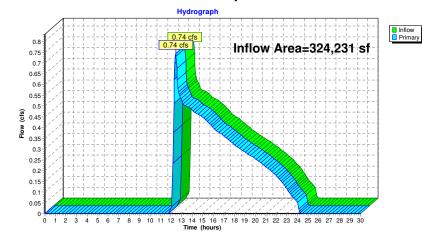

Summary for Pond WQU2: WQU2

Inflow Area =	37,533 sf, 66.78% Impervious, Inflow Depth = 4.07"	for 100-Year event
Inflow =	3.97 cfs @ 12.09 hrs, Volume= 12,724 cf	
Outflow =	3.97 cfs @ 12.09 hrs, Volume= 12,724 cf, Atter	n= 0%, Lag= 0.0 min
Primary =	3.97 cfs @ 12.09 hrs, Volume= 12,724 cf	

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 273.35' @ 12.09 hrs Flood Elev= 275.35'

Device Routing Invert Outlet Devices	
#1 Primary 272.00' 15.0" Round Culvert L= 50.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 272.00' / 271.50' S= 0.0100 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.23 sf	

Primary OutFlow Max=3.88 cfs @ 12.09 hrs HW=273.32' (Free Discharge) 1=Culvert (Inlet Controls 3.88 cfs @ 3.16 fps)

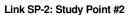

Proposed HydroCAD	Type III 24-hr	100-Year Rainfall=6.50"
Prepared by Microsoft		Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Software Solutions	s LLC	Page 138

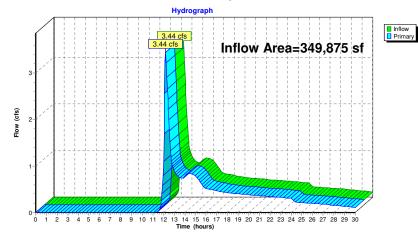
Summary for Link SP-1: Study Point #1

Inflow Area =	324,231 sf, 39.05% Impervious,	Inflow Depth = 0.51"	for 100-Year event
Inflow =	0.74 cfs @ 12.44 hrs, Volume=	13,912 cf	
Primary =	0.74 cfs @ 12.44 hrs, Volume=	13,912 cf, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Link SP-1: Study Point #1




Proposed HydroCAD	Type III 24-hr 100-Year Rainfall=6.50"
Prepared by Microsoft	Printed 12/23/2019
HydroCAD® 10.00-18 s/n 02881 © 2016 HydroCAD Sol	itware Solutions LLC Page 139

Summary for Link SP-2: Study Point #2

Inflow Area =	349,875 sf, 50.91% Impervious, Inflow Depth > 1.05" for 100-Year event	
Inflow =	3.44 cfs @ 12.20 hrs, Volume= 30,503 cf	
Primary =	3.44 cfs @ 12.20 hrs, Volume= 30,503 cf, Atten= 0%, Lag= 0.0 min	

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

SECTION 5.0 WATERSHED PLAN

EXISTING WATERSHED - LOCATED IN POCKET AT REAR

PROPOSED WATERSHED

(LOCATED IN REAR POCKET)

AA

PROPOSED GRADING & DRAINAGE PLAN

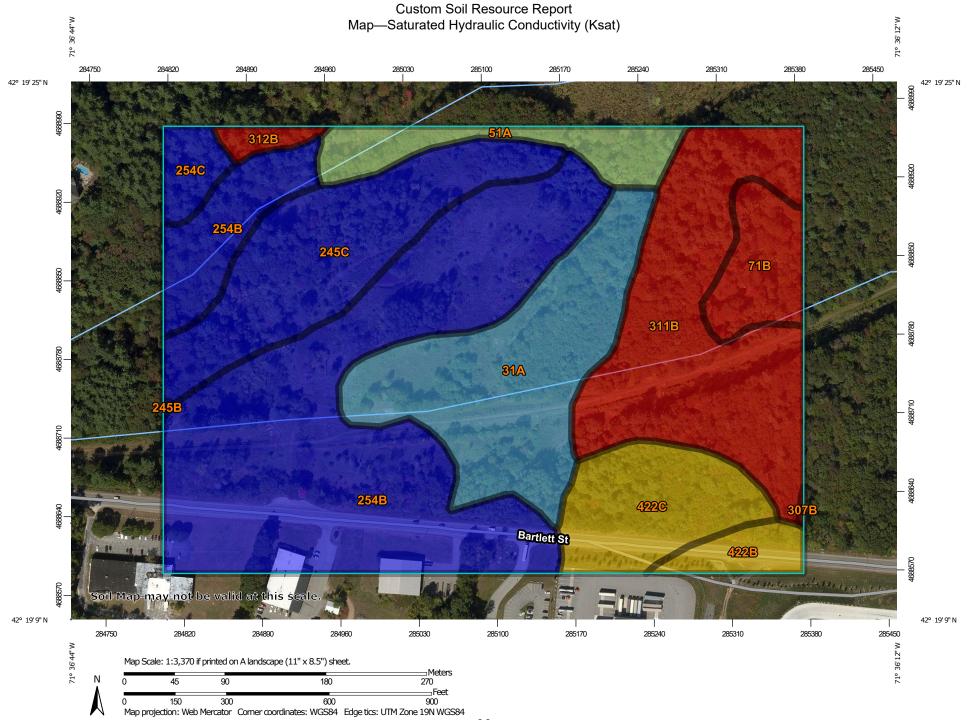
(LOCATED IN REAR POCKET)

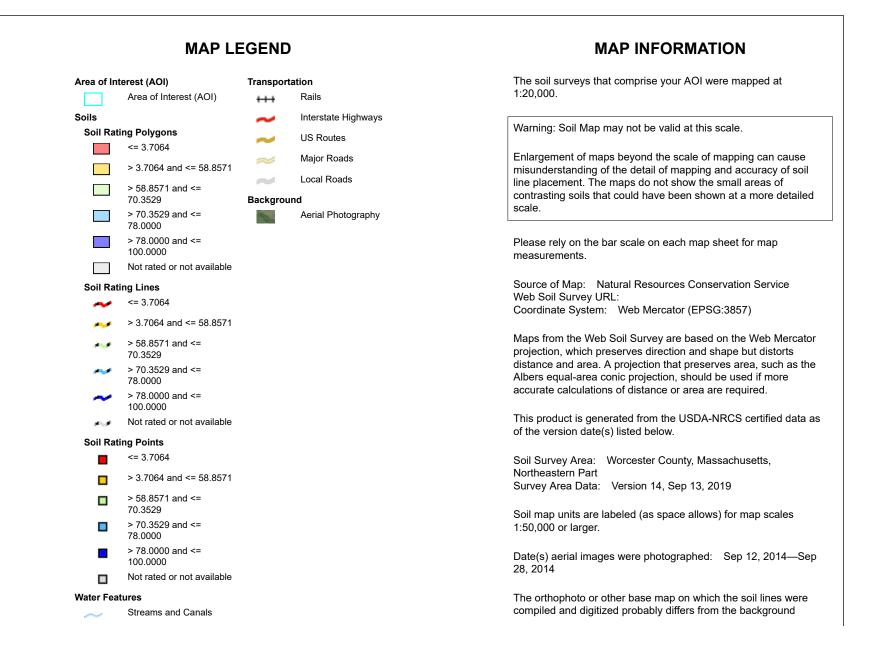
SECTION 6.0 APPENDIX

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Worcester County, Massachusetts, Northeastern Part

	MAP L	EGEND)	MAP INFORMATION
	erest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:20,000.
Soils	Soil Map Unit Polygons Soil Map Unit Lines	¢ ¢	Very Stony Spot Wet Spot Other	Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause
Special	Soil Map Unit Points Point Features Blowout	∆ ► Water Fea	Special Line Features	misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.
×	Borrow Pit Clay Spot Closed Depression	Transport	ation Rails	Please rely on the bar scale on each map sheet for map measurements.
◇ ¥	Gravel Pit Gravelly Spot	% %	Interstate Highways US Routes Major Roads	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
0 A 4	Landfill Lava Flow Marsh or swamp	Backgrou	Local Roads nd Aerial Photography	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more
☆ © ○	Mine or Quarry Miscellaneous Water Perennial Water			accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
× + ::	Rock Outcrop Saline Spot Sandy Spot			Soil Survey Area: Worcester County, Massachusetts, Northeastern Part Survey Area Data: Version 14, Sep 13, 2019
⊕ ◊	Severely Eroded Spot			Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
é M	Slide or Slip Sodic Spot			Date(s) aerial images were photographed: Sep 12, 2014—Sep 28, 2014 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background


Map Unit Legend


Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
Walpole sandy loam, 0 to 3 percent slopes		8.5	15.1%
51A	Swansea muck, 0 to 1 percent slopes	2.5	4.4%
71B	Ridgebury fine sandy loam, 3 to 8 percent slopes, extremely stony	2.2	4.0%
245B	Hinckley loamy sand, 3 to 8 percent slopes	0.0	0.0%
245C	Hinckley loamy sand, 8 to 15 percent slopes	6.9	12.2%
254B	Merrimac fine sandy loam, 3 to 8 percent slopes	20.0	35.3%
254C	Merrimac fine sandy loam, 8 to 15 percent slopes	1.0	1.8%
307B	Paxton fine sandy loam, 0 to 8 percent slopes, extremely stony	0.0	0.0%
311B Woodbridge fine sandy loam, 0 to 8 percent slopes, very stony		9.7	17.2%
312B	Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely stony	0.5	0.9%
422B Canton fine sandy loam, 0 to 8 percent slopes, extremely stony		1.1	2.0%
422C	Canton fine sandy loam, 8 to 15 percent slopes, extremely stony	4.1	7.2%
Totals for Area of Interest		56.6	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class.

Table—Saturated Hydraulic Conductivity (Ksat)

Map unit symbol	Map unit name	Rating (micrometers per second)	Acres in AOI	Percent of AOI
31A	Walpole sandy loam, 0 to 3 percent slopes	78.0000	8.5	15.1%
51A	Swansea muck, 0 to 1 percent slopes	70.3529	2.5	4.4%
71B	Ridgebury fine sandy loam, 3 to 8 percent slopes, extremely stony	1.4242	2.2	4.0%
245B	Hinckley loamy sand, 3 to 8 percent slopes	100.0000	0.0	0.0%
245C	Hinckley loamy sand, 8 to 15 percent slopes	100.0000	6.9	12.2%
254B	Merrimac fine sandy loam, 3 to 8 percent slopes	100.0000	20.0	35.3%
254C	Merrimac fine sandy loam, 8 to 15 percent slopes	100.0000	1.0	1.8%
307B	Paxton fine sandy loam, 0 to 8 percent slopes, extremely stony	2.9993	0.0	0.0%
311B	Woodbridge fine sandy loam, 0 to 8 percent slopes, very stony	3.7064	9.7	17.2%
312B	Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely stony	3.7064	0.5	0.9%
422B	Canton fine sandy loam, 0 to 8 percent slopes, extremely stony	58.8571	1.1	2.0%
422C	Canton fine sandy loam, 8 to 15 percent slopes, extremely stony	58.8571	4.1	7.2%
Totals for Area of Inter	est	56.6	100.0%	

Rating Options—Saturated Hydraulic Conductivity (Ksat)

Units of Measure: micrometers per second Aggregation Method: Dominant Component Component Percent Cutoff: None Specified Tie-break Rule: Fastest Interpret Nulls as Zero: No Layer Options (Horizon Aggregation Method): Depth Range (Weighted Average)

Top Depth: 12 Bottom Depth: 200 Units of Measure: Inches

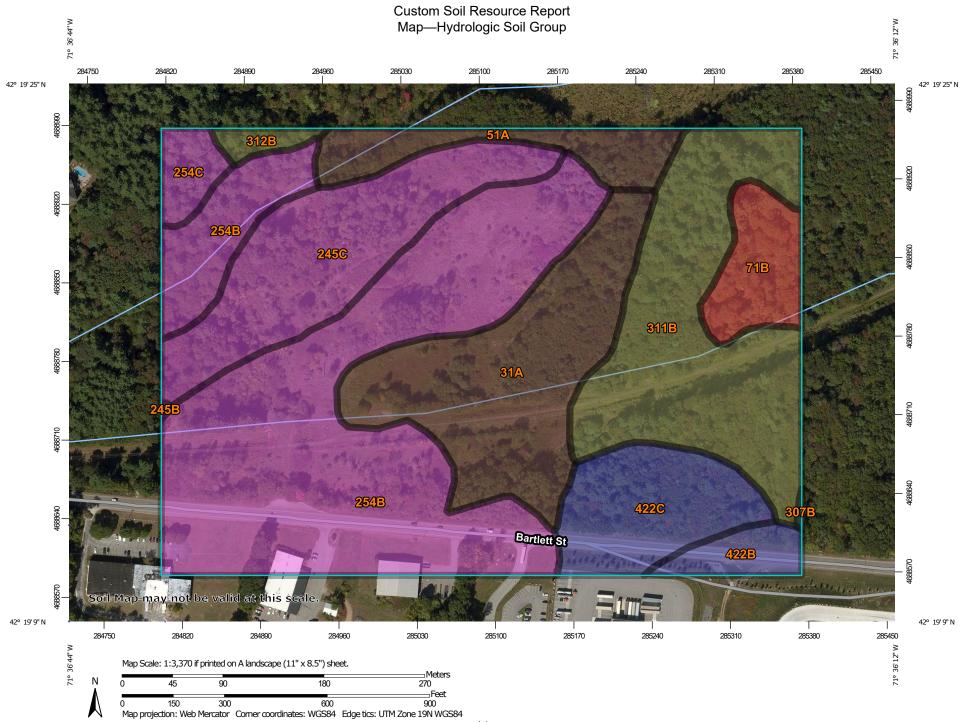
Soil Qualities and Features

Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.

Hydrologic Soil Group

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:


Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Area of Interest (AOI) С Area of Interest (AOI) C/D D Soil Rating Polygons Not rated or not available А Water Features A/D Streams and Canals -

Soils

В

С

C/D

Not rated or not available

Not rated or not available

D

Soil Rating Lines

-

1 M H

an ai

А

B

A/D

B/D

C/D

С

D

Soil Rating Points

А

В

A/D

B/D

B/D

MAP LEGEND

Transportation

Rails

Interstate Highways \sim

US Routes \sim Major Roads

Local Roads ~

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Worcester County, Massachusetts, Northeastern Part Survey Area Data: Version 14, Sep 13, 2019

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Sep 12, 2014—Sep 28, 2014

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background

Table—Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
31A	Walpole sandy loam, 0 to 3 percent slopes	B/D	8.5	15.1%
51A	Swansea muck, 0 to 1 percent slopes	B/D	2.5	4.4%
71B	Ridgebury fine sandy loam, 3 to 8 percent slopes, extremely stony	D	2.2	4.0%
245B	Hinckley loamy sand, 3 to 8 percent slopes	A	0.0	0.0%
245C	Hinckley loamy sand, 8 to 15 percent slopes	A	6.9	12.2%
254B	Merrimac fine sandy loam, 3 to 8 percent slopes	A	20.0	35.3%
254C	Merrimac fine sandy loam, 8 to 15 percent slopes	A	1.0	1.8%
307B	Paxton fine sandy loam, 0 to 8 percent slopes, extremely stony	С	0.0	0.0%
311B	Woodbridge fine sandy loam, 0 to 8 percent slopes, very stony	C/D	9.7	17.2%
312B	Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely stony	C/D	0.5	0.9%
422B	Canton fine sandy loam, 0 to 8 percent slopes, extremely stony	В	1.1	2.0%
422C	Canton fine sandy loam, 8 to 15 percent slopes, extremely stony	В	4.1	7.2%
Totals for Area of Inter	est	56.6	100.0%	

Rating Options—Hydrologic Soil Group

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

F-1. Rainfall Data for Massachusetts from *Rainfall Frequency Atlas of the United States* (TP-40)

Users of this Handbook should note that current MA DEP written guidance (see DEP Waterlines newsletter -- Fall 2000) requires the use of TP-40 Rainfall Data for calculations under the Wetlands Protection Regulations and the Stormwater Management Policy. More stringent design storms may be used under a local bylaw or ordinance. However, DEP will continue to require the use of TP-40 in any case it reviews under the Wetlands Protection Act and Stormwater Management Policy.

County Name	1-yr 24-hr	2-yr 24-hr	5-yr 24-hr	10-yr 24-hr	25-yr 24-hr	50-yr 24-hr	100-yr 24-hr
Barnstable	2.5	3.6	4.5	4.8	5.7	6.4	7.1
Berkshire	2.5	2.9	3.8	4.4	5.1	5.9	6.4
Bristol	2.5	3.4	4.3	4.8	5.6	6.3	7.0
Dukes	2.5	3.6	4.6	4.9	5.8	6.5	7.2
Essex	2.5	3.1	3.9	4.5	5.4	5.9	6.5
Franklin	2.5	2.9	3.8	4.3	5.1	5.8	6.2
Hampden	2.5	3.0	4.0	4.6	5.3	6.0	6.5
Hampshire	2.5	3.0	3.9	4.5	5.2	5.9	6.4
Middlesex	2.5	3.1	4.0	4.5	5.3	5.9	6.5
Nantucket	2.5	3.6	4.6	4.9	5.8	6.5	7.2
Norfolk	2.5	3.2	4.1	4.7	5.5	6.1	6.7
Plymouth	2.5	3.4	4.3	4.7	5.6	6.2	7.0
Suffolk	2.5	3.2	4.0	4.6	5.5	6.0	6.6
Worcester	2.5	3.0	4.0	4.5	5.3	5.9	6.5

Adjusted Technical Paper 40 Design Storms for 24-hour Event by County

Conduit	Manning's Coefficients					
Closed Conduits						
Asbestos-Cement Pipe	0.011 to 0.015					
Brick	0.013 to 0.017					
Cast Iron Pipe						
Cement-lined and seal-coated	0.011 to 0.015					
Concrete (Monolithic)						
Smooth forms	0.012 to 0.014					
Rough forms	0.015 to 0.017					
Concrete Pipe	0.011 to 0.015					
Corrugated-Metal Pipe (1/2 - STUL 34470 2 1/2-inch corrgtn.)						
Plain	0.022 to 0.026					
Paved invert	0.018 to 0.022					
Spun asphalt-lined	0.011 to 0.015					
Plastic Pipe (Smooth)	0.011 to 0.015					
Vitrified Clay						
Pipes	0.011 to 0.015					
Liner channels	0.013 to 0.017					
Open Channels						
Lined Channels						
Asphalt	0.013 to 0.017					
Brick	0.012 to 0.018					
Concrete	0.011 to 0.020					
Rubble or riprap	0.020 to 0.035					
Vegetal	0.030 to 0.040					
Excavated or Dredged						
Earth, straight and uniform	0.020 to 0.030					
Earth, winding, fairly uniform	0.025 to 0.040					
Rock	0.030 to 0.045					
Unmaintained	0.050 to 0.140					
Natural Channels (minor streams, top width at flood state < 100 feet)						
Fairly regular section	0.030 to 0.070					
Irregular section with pools	0.040 to 0.100					

Manning's Roughness Coefficients ("n")

- .

1

INSTRUCTIONS:

1. In BMP Column, click on Blue Cell to Activate Drop Down Menu

2. Select BMP from Drop Down Menu

3. After BMP is selected, TSS Removal and other Columns are automatically completed.

	Location:	Bartlett Street, Parcel H, No			
	В	С	D	E	F
	BMP ¹	TSS Removal Rate ¹	Starting TSS Load*	Amount Removed (C*D)	Remaining Load (D-E)
heet	Street Sweeping - 5%	0.05	1.00	0.05	0.95
moval Worksheet	Deep Sump and Hooded Catch Basin	0.25	0.95	0.24	0.71
	Proprietary Treatment Practice	0.00	0.71	0.00	0.71
TSS Re Calculation	Infiltration Basin	0.80	0.71	0.57	0.14
Cal		0.00	0.14	0.00	0.14
		Total T Hayes Memorial Drive	SS Removal =	86%	Separate Form Needs to be Completed for Each Outlet or BMP Train
	Prepared By:			*Equals remaining load from which enters the BMP	n previous BMP (E)

Allen & Major As	sociates, Inc.		Computation SI	neet
Title	MA DEP Standard Calculations		Ву	ARM
Project	Parcel H		Chk'd	-
Location	Bartlett Street, Nor	thborough MA	Apprv'd	-
Date	December 24, 201	9		
Revised				

Stormwater Recharge/Water Quality Volume Table

Rv = F * Impervious Area

Rv = Required Recharge Volume, expressed in ft³, cubic yards or acre-feet

F = Target Depth Factor associated with each Hydraulic Soil Group

Impervious Area = pavement & rooftop area on site

 A_{WQ} = Required Water Quality Treatment Volume, expressed in ft³

 $D_{WQ} = Water Quality Depth$

 $A_{IMP} = Impervious Area (excluding non-metal roofs)$

						Recharge Required		Water Quality V	olume Required
Watershed (Pond		l en de cened	Impervious Are	ea (Square Feet)		Impervious Area		\mathbf{D} (leash)	A
1)	Area (Sq. Ft.)	Landscaped	HSG A (F=.6)	HSG B (F=.35)	F Avg. (Inches)	(Feet)	$\mathbf{R}\mathbf{v} (ft^3)$	D_{WQ} (Inch)	A_{WQ}
P-1	5,944	3,307	2,637	0	0.6	2,637	132	0.5	110
P-2	4,529	1,914	2,615	0	0.6	2,615	131	0.5	109
P-3	1,434	742	692	0	0.6	692	35	0.5	29
P-4	1,029	377	652	0	0.6	652	33	0.5	27
P-5	13,860	11,413	2,447	0	0.6	2,447	122	0.5	102
P-7	5,523	2,121	3,402	0	0.6	3,402	170	0.5	142
P-8	4,229	1,911	2,318	0	0.6	2,318	116	0.5	97
P-9	3,588	1,687	1,901	0	0.6	1,901	95	0.5	79
P-10	12,010	4,394	7,616	0	0.6	7,616	381	0.5	317
P-11	149,569	149,569	0	0	0.0	0	0	0.5	0
P-12	16,095	949	15,146	0	0.6	15,146	757	0.5	631
P-13	12,181	2,356	9,825	0	0.6	9,825	491	0.5	409
P-14	12,308	12,257	51	0	0.6	51	3	0.5	2
P-15A	101,502	0	101,502	0	0.6	101,502	5,075	0.5	4,229
P-15B	49,400	0	49,400	0	0.6	49,400	2,470	0.5	2,058
P-16	32,393	32,293	100	0	0.6	100	5	0.5	4
P-17	23,320	23,320	0	0	0.0	0	0	0.5	0
P-18	102,114	102,114	0	0	0.0	0	0	0.5	0
P-19	29,147	0	28,117	1,030	0.6	29,147	1,436	0.5	1,214
P-20	15,834	0	15,834	0	0.6	15,834	792	0.5	660
P-21	33,308	0	33,308	0	0.6	33,308	1,665	0.5	1,388
P-22	16,831	9,035	7,796	0	0.6	7,796	390	0.5	325
P-23	7,114	2,687	4,427	0	0.6	4,427	221	0.5	184
P-24	15,954	5,144	10,810	0	0.6	10,810	541	0.5	450
P-25	4,890	1,767	3,123	0	0.6	3,123	156	0.5	130
Total	674,106	369,357	303,719	1,030		304,749	15,216		12,698

Allen & Major As	sociates, Inc.		Computation	Sheet
Title	MA DEP Stand	lard Calculations	Ву	ARM
Project	Parcel H		Chk'd	-
Location	Bartlett Street, Nor	thborough MA	Apprv'd	-
Date	December 24, 201	9		

Stormwater Recharge Summary

Rv = **F** * Impervious Area

 $\mathbf{R}\mathbf{v} = Required Recharge Volume, expressed in ft³, cubic yards or acre-feet$

F = Target Depth Factor associated with each Hydraulic Soil Group

Impervious Area = pavement & rooftop area on site

	Required (cf)	Provided (cf)	
ARv =	1,256	8,328	Infiltration Pond #1 (P-7, P-8, P-9, P-10, P-13, P-14)
ARv =	1,256	8,328	Total

	Required (cf)	Provided (cf)	
ARv =	5,075	15,490	Infiltration Pond #2 (P-15A, P-17)
ARv =	5,075	15,490	Total

	Required (cf)	Provided (cf)]
ARv =	8,885	13,264	Infiltration Pond #3 (P-1, P-2, P-3, P-4, P-5, P-12, P-24, P-25, P-22, P-23, P-21, P-20, P-19, P-15B, P-16)
ARv =	8,885	13,264	Total

Water Quality Volume

 $A_{WQ} = Required Water Quality Treatment Volume, expressed in ft³$ $<math>D_{WQ} = Water Quality Depth$ $A_{IMP} = Impervious Area (excluding non-metal roofs)$

	Required (cf)	Provided (cf)	
$A_{WQ} =$	1,046	8,328	Infiltration Pond #1 (P-7, P-8, P-9, P-10, P-13, P-14)
$A_{WQ} =$	1,046	8,328	Total

	Required (cf)	Provided (cf)	
$A_{WQ} =$	4,229	15,490	Infiltration Pond #2 (P-15A, P-17)
$A_{WQ} =$	4,229	15,490	Total

	Required (cf)	Provided (cf)	
A_{WQ}	7,422	13,264	Infiltration Pond #3 (P-1, P-2, P-3, P-4, P-5, P-12, P-24, P-25, P-22, P-23, P-21, P-20, P-19, P-15B, P-16)
A_{WQ}		13,264	Total

Allen & Major Associates, Inc.			Computation Sheet	
Title	MA DEP Stand	ard Calculations	Ву	ARM
Project	Parcel H		Chk'd	-
Location	Bartlett Street, Nort	hborough MA	Apprv'd	-
Date	December 24, 2019	9		

Draindown Within 72 Hours

Time_{drawdown}=(Rv) (1/Design Infiltration Rate in inches per hour) (Conversion for inches to feet) (1/bottom area in feet)

Infiltration Pond #1 (Fine Sandy Loam)
Infiltration Rate (in/Hr)=	2.41
Bottom Area $(ft^2) =$	1,398
Infiltration Volume $(ft^3) =$	8,328
Time _{drawdown} (Hours)=	29.66

Time_{drawdown}=(Rv) (1/Design Infiltration Rate in inches per hour) (Conversion for inches to feet) (1/bottom area in feet)

Infiltration Pond #2 (Fine Sandy Loam)								
Infiltration Rate (in/Hr)=	2.41							
Bottom Area $(ft^2) =$								
Infiltration Volume (ft^3) =								
Time _{drawdown} (Hours)=	20.34							

Time_{drawdown}=(Rv) (1/Design Infiltration Rate in inches per hour) (Conversion for inches to feet) (1/bottom area in feet)

Infiltration Pond #3 (Fine Sandy Loam)
Infiltration Rate (in/Hr)=	2.41
Bottom Area $(ft^2) =$	7,916
Infiltration Volume $(ft^3) =$	13,264
Time _{drawdown} (Hours)=	8.34

Mounding Analysis

Infiltration Ponds	Min. Water Table*	System Bottom	Vertical Separation	Attenuated System	Mounding Analysis Required*
1	267.0	271.0	4.0	YES	NO
2	261.0	265.0	4.0	YES	NO
3	251.0	255.0	4.0	YES	NO

*Mounding analysis is required when the seasonal high ground water is within 4 feet of the bottom of the infiltration structure.

*Minimum Water table to be investigated by test pits in the spring of 2020 to validate assumed elevations.

Stage-Area-Storage for Pond DP1: Pond #1

Elevation (feet)	Surface (sq-ft)	Wetted (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Wetted (sq-ft)	Storage (cubic-feet)	
270.00	878	878	0	273.50	3,117	3,179	6,671	
270.05	901	902	44	273.55	3,155	3,219	6,828	
270.10	925	926	90	273.60	3,194	3,260	6,986	
270.15	949	950	137	273.65	3,234	3,300	7,147	
270.20	973	975	185	273.70	3,273	3,341	7,310	
270.25	997	1,000	234	273.75	3,313	3,382	7,474	
270.30	1,022	1,026	285	273.80	3,353	3,423	7,641	
270.35	1,047	1,051	336	273.85	3,393	3,465	7,810	
270.40	1,072	1,077	389	273.90	3,433	3,506	7,980	
270.45	1,098	1,104	444	273.95	3,474	3,548	8,153	
270.50	1,124	1,130	499	274.00	3,515	3,591	8,328	
270.55			556	274.00	3,554	3,631	8,505	
	1,150	1,157				3,031	8,683	
270.60	1,177	1,184	614	274.10	3,593	3,672	8,864	
270.65	1,204	1,212	674	274.15	3,633	3,712	0,004	
270.70	1,231	1,240	735	274.20	3,672	3,754	9,046	
270.75	1,258	1,268	797	274.25	3,712	3,795	9,231	
270.80	1,286	1,296	860	274.30	3,752	3,836	9,418	storage below
270.85	1,314	1,325	925	274.35	3,793	3,878	9,60 <mark>6</mark>	
270.90	1,342	1,354	992	274.40	3,833	3,920	9,797	orifice
270.95	1,371	1,384	1,060	274.45	3,874	3,962	9,990	
271.00	1,400	1,413	1,129	274.50	3,915	4,005	10,184	
271.05	1,429	1,443	1,200	274.55	3,956	4,047	10,381	
271.10	1,457	1,472	1,272	274.60	3,997	4,090	10,580	
271.15	1,487	1,502	1,345	274.65	4,039	4,133	10,781	
271.20	1,516	1,532	1,420	274.70	4,081	4,177	10,984	
271.25	1,546	1,563	1,497	274.75	4,123	4,220	11,189	
271.30	1,576	1,594	1,575	274.80	4,165	4,264	11,396	
271.35	1,606	1,625	1,655	274.85	4,207	4,308	11,605	
271.40	1,637	1,656	1,736	274.90	4,250	4,352	11,817	
271.45	1,667	1,688	1,818	274.95	4,293	4,396	12,030	
271.50	1,699	1,720	1,902	275.00	4,336	4,441	12,246	
271.55	1,730	1,752	1,988		,			
271.60	1,762	1,785	2,075					
271.65	1,794	1,818	2,164					
271.70	1,826	1,851	2,255					
271.75	1,859	1,884	2,347					
271.80	1,892	1,918	2,441					
271.85	1,925	1,952	2,536					
271.90	1,958	1,987	2,633					
271.95	1,992	2,021	2,033					
272.00	2,026	2,021	2,832					
272.00	2,020	2,030	2,932					
272.10			3,038					
272.10	2,093	2,125						
272.15	2,127	2,160	3,144					
272.20	2,161	2,195	3,251					
272.25	2,195	2,230	3,360					
272.30	2,229	2,265	3,470					
272.35	2,264	2,301	3,583					
272.40	2,299	2,337	3,697					
272.45	2,335	2,374	3,813					
272.50	2,370	2,411	3,930					
272.55	2,406	2,447	4,050					
272.60	2,443	2,485	4,171					
272.65	2,479	2,522	4,294					
272.70	2,516	2,560	4,419					
272.75	2,553	2,598	4,546					
272.80	2,590	2,636	4,674					
272.85	2,628	2,675	4,805					
272.90	2,666	2,714	4,937					
272.95	2,704	2,753	5,071					
273.00	2,742	2,793	5,207					
273.05	2,778	2,830	5,345					
273.10	2,815	2,868	5,485					
273.15	2,852	2,906	5,627					
273.20	2,889	2,944	5,770					
273.25	2,926	2,983	5,916					
273.30	2,964	3,022	6,063					
273.35	3,002	3,061	6,212					
273.40	3,040	3,100	6,363					
273.45	3,078	3,140	6,516					
	-							

Stage-Area-Storage for Pond DP2: Pond #2

Elevation (feet)	Surface (sq-ft)	Wetted (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Wetted (sq-ft)	Storage (cubic-feet)
265.00	3,792	3,792	0	268.50	8,570	8,665	21,103
265.05	3,847	3,848	191	268.55	8,651	8,747	21,534
265.10	3,902	3,905	385	268.60	8,732	8,830	21,968
265.15	3,958	3,962	581	268.65	8,813	8,913	22,407
265.20	4,015	4,019	781	268.70	8,895	8,996	22,850
265.25 265.30	4,071	4,077	983	268.75 268.80	8,977	9,080	23,296 23,747
265.30	4,128 4,186	4,135 4,193	1,188 1,396	268.85	9,059 9,142	9,164 9,249	23,747 24,202
265.40	4,243	4,193	1,606	268.90	9,225	9,334	24,662
265.45	4,302	4,312	1,820	268.95	9,309	9,419	25,125
265.50	4,360	4,371	2,036	269.00	9,393	9,505	25,592
265.55	4,419	4,431	2,256	269.05	9,470	9,584	26,064
265.60	4,479	4,492	2,478	269.10	9,548	9,664	26,540
265.65	4,538	4,553	2,704	269.15	9,626	9,744	27,019
265.70	4,599	4,614	2,932	269.20	9,704	9,824	27,502
265.75	4,659	4,676	3,164	269.25	9,783	9,904	27,989
265.80 265.85	4,720 4,781	4,738 4,801	3,398 3,636	269.30 269.35	9,862 9,941	9,985 10,066	28,480 28,975
265.90	4,843	4,864	3,876	269.35	10,021	10,000	28,975 29,475
265.95	4,905	4,927	4,120	269.45	10,100	10,140	29,978
266.00	4,968	4,991	4,367	269.50	10,181	10,312	30,485
266.05	5,031	5,055	4,617	269.55	10,261	10,394	30,996
266.10	5,094	5,120	4,870	269.60	10,342	10,477	31,511
266.15	5,158	5,184	5,126	269.65	10,423	10,560	32,030
266.20	5,222	5,250	5,386	269.70	10,505	10,644	32,553
266.25	5,286	5,315	5,648	269.75	10,586	10,727	33,080
266.30	5,351	5,381	5,914	269.80	10,668	10,812	33,612
266.35	5,416	5,448	6,183	269.85	10,751	10,896	34,147
266.40 266.45	5,481 5,547	5,515 5,582	6,456 6,732	269.90 269.95	10,834 10,917	10,981 11,066	34,687 35,230
266.50	5,614	5,650	7,011	270.00	11,000	11,151	35,778
266.55	5,681	5,718	7,293	270.00	11,000	,	00,110
266.60	5,748	5,786	7,579				
266.65	5,815	5,855	7,868				
266.70	5,883	5,924	8,160				
266.75	5,951	5,994	8,456				
266.80	6,020	6,064	8,755				
266.85	6,089	6,134	9,058				
266.90	6,159 6,229	6,205 6,277	9,364 9,674				
266.95 267.00	6,299	6,348	9,974 9,987				
267.05	6,370	6,420	10,304				
267.10	6,441	6,493	10,624				
267.15	6,512	6,565	10,948				
267.20	6,584	6,639	11,275				
267.25	6,656	6,712	11,606				
267.30	6,728	6,786	11,941				
267.35	6,801	6,860	12,279				
267.40	6,875	6,935	12,621				
267.45 267.50	6,948 7,022	7,010 7,086	12,967 13,316				
267.55	7,097	7,162	13,669				
267.60	7,172	7,238	14,026				
267.65	7,247	7,315	14,386				
267.70	7,323	7,392	14,750				
267.75	7,399	7,470	15,118				
267.80	7,475	7,548	15,490 <		storage below		
267.85	7,552	7,626	15,866		orifice		
267.90	7,629	7,705	16,245		onnoo		
267.95 268.00	7,707 7,785	7,784 7,864	16,629 17,016				
268.05	7,862	7,942	17,407				
268.10	7,939	8,021	17,802				
268.15	8,017	8,100	18,201				
268.20	8,095	8,180	18,604				
268.25	8,173	8,260	19,011				
268.30	8,252	8,340	19,421				
268.35	8,331	8,421	19,836				
268.40	8,410	8,502	20,254				
268.45	8,490	8,583	20,677				
				I			

Stage-Area-Storage for Pond DP3: Pond #3

Elevation (feet)	Surface (sq-ft)	Wetted (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Wetted (sq-ft)	Storage (cubic-feet)
255.00	7,916	7,916	0	258.50	12,494	12,661	35,513
255.05	7,976	7,978	397	258.55	12,565	12,734	36,140
255.10	8,036	8,040	798	258.60	12,635	12,808	36,770
255.15	8,096	8,102	1,201	258.65	12,706	12,881	37,403
255.20 255.25	8,157 8,217	8,165 8,228	1,607 2,017	258.70 258.75	12,777 12,849	12,955 13,029	38,040 38,681
255.25	8,278	8,291	2,017	258.80	12,920	13,103	39,325
255.35	8,339	8,354	2,844	258.85	12,992	13,178	39,973
255.40	8,401	8,417	3,263	258.90	13,064	13,253	40,624
255.45	8,462	8,481	3,684	258.95	13,136	13,328	41,279
255.50	8,524	8,545	4,109	259.00	13,208	13,403	41,938
255.55	8,586	8,609	4,537	259.05	13,287	13,484	42,600
255.60 255.65	8,649 8,711	8,674 8,738	4,968 5,402	259.10 259.15	13,366 13,445	13,566 13,647	43,267 43,937
255.70	8,774	8,803	5,839	259.20	13,525	13,730	44,611
255.75	8,837	8,868	6,279	259.25	13,604	13,812	45,289
255.80	8,900	8,934	6,723	259.30	13,684	13,894	45,972
255.85	8,963	8,999	7,169	259.35	13,764	13,977	46,658
255.90	9,027	9,065	7,619	259.40	13,845	14,060	47,348
255.95 256.00	9,091 9,155	9,131 9,197	8,072 8,528	259.45 259.50	13,925 14,006	14,144 14,227	48,042 48,741
256.05	9,218	9,262	8,987	259.55	14,087	14,311	49,443
256.10	9,281	9,328	9,450	259.60	14,169	14,395	50,149
256.15	9,344	9,393	9,915	259.65	14,250	14,479	50,860
256.20	9,407	9,459	10,384	259.70	14,332	14,564	51,574
256.25	9,470	9,524	10,856	259.75	14,414	14,649	52,293
256.30 256.35	9,534 9,598	9,590 9,657	11,331 11,809	259.80 259.85	14,497 14,579	14,734 14,819	53,016 53,743
256.40	9,662	9,723	12,291	259.85	14,662	14,904	54,474
256.45	9,727	9,790	12,776	259.95	14,745	14,990	55,209
256.50	9,791	9,857	13,264	260.00	14,828	15,076	55,948
256.55	9,856	9,924	13,755	\searrow			
256.60 256.65	9,921 9,986	9,991 10,059	14,249 14,747	[etorogo bolow		
256.70	10,052	10,059	15,248		storage below		
256.75	10,117	10,195	15,752		orifice		
256.80	10,183	10,263	16,260				
256.85	10,249	10,331	16,771				
256.90	10,316	10,400	17,285				
256.95 257.00	10,382 10,449	10,469 10,538	17,802 18,323				
257.05	10,515	10,606	18,847				
257.10	10,580	10,675	19,374				
257.15	10,646	10,743	19,905				
257.20	10,713	10,812	20,439				
257.25	10,779	10,881	20,976				
257.30 257.35	10,846 10,913	10,950 11,019	21,517 22,061				
257.40	10,980	11,089	22,601				
257.45	11,047	11,158	23,159				
257.50	11,114	11,228	23,713				
257.55	11,182	11,299	24,270				
257.60 257.65	11,250 11,318	11,369 11,440	24,831 25,395				
257.70	11,386	11,510	25,963				
257.75	11,455	11,582	26,534				
257.80	11,523	11,653	27,108				
257.85	11,592	11,724	27,686				
257.90	11,661	11,796	28,267				
257.95 258.00	11,730 11,800	11,868 11,940	28,852 29,441				
258.05	11,869	12,011	30,032				
258.10	11,937	12,082	30,627				
258.15	12,006	12,154	31,226				
258.20	12,075	12,226	31,828				
258.25	12,145	12,298	32,433				
258.30 258.35	12,214 12,284	12,370 12,443	33,042 33,655				
258.40	12,354	12,515	34,271				
258.45	12,424	12,588	34,890				
			I				

DRAINAGE PIPE DESIGN ANALYSIS

Manning's Formula

V=1.486/n* $R^{2/3*}S^{1/2}$ Q = V*A (25-Year storm) Where: V is the velocity in Ft/sec. n is Manning's coefficient of friction R is the Hydraulic Radius S is the slope of the pipe

A&M Job No.	1145-09
Date:	12/20/2019
Project Location:	
Parcel H Developm	ent
Bartlett Street	
Northborough, MA	
Prepared For: The Gutierrez Com 200 Summit Drive	pany
Suite 400	
Burlington, MA 018	03

R=Area/Wetted Perimeter

Where: Area=Pi*(R/12)2 Wetted Perimeter=2*Pi*R/12

PIPE	Q _{design}	n	Diameter	Α	Wp	R	S	Q _{full}	Q _{full} ≥ Q _{design}	V _{full}	Q _d /Q _f	Results	V _{design}	$2 \text{ ft/s} \leq V_{\text{design}} \leq 10 \text{ ft/s}$
	(cfs)		(inches)	(ft^2)	(ft)	(ft)	(feet/foot)	(cfs)		(ft/s)		Fig. 4-4A	(ft/s)	
DMH-01	0.58	0.013	12	0.79	3.14	0.25	0.030	6.17	OK	7.86	0.09	0.58	4.56	OK
DMH-02	0.73	0.013	12	0.79	3.14	0.25	0.080	10.08	OK	12.83	0.07	0.53	6.80	OK
DMH-03	3.84	0.013	15	1.23	3.93	0.31	0.010	6.46	OK	5.26	0.59	1.04	5.47	OK
DMH-04	3.11	0.013	12	0.79	3.14	0.25	0.010	3.56	OK	4.54	0.87	1.13	5.13	OK
DMH-05	4.58	0.013	15	1.23	3.93	0.31	0.010	6.46	OK	5.26	0.71	1.08	5.69	OK
DMH-06	4.58	0.013	15	1.23	3.93	0.31	0.010	6.46	OK	5.26	0.71	1.08	5.69	OK
DMH-07	5.96	0.013	15	1.23	3.93	0.31	0.010	6.46	OK	5.26	0.92	1.14	6.00	OK
DMH-08	9.82	0.013	18	1.77	4.71	0.38	0.010	10.50	OK	5.94	0.93	1.14	6.78	OK
DMH-09	11.66	0.013	24	3.14	6.28	0.50	0.010	22.62	OK	7.20	0.52	1.00	7.20	OK
DMH-10	1.75	0.013	12	0.79	3.14	0.25	0.010	3.56	OK	4.54	0.49	0.98	4.45	OK
WQU-1	15.05	0.013	24	3.14	6.28	0.50	0.010	22.62	OK	7.20	0.67	1.07	7.70	OK
WQU-2	2.95	0.013	12	0.79	3.14	0.25	0.010	3.56	OK	4.54	0.83	1.12	5.08	OK

Project: Location: Prepared For:	Parcel H Development Northborough, MA Allen & Major Associates	C NTECH ENGINEERED SOLUTIONS
<u>Purpose:</u>	To calculate the water quality flow rate (WQF) over a given site area. In derived from the first 1" of runoff from the contributing impervious surfa	
Reference:	Massachusetts Dept. of Environmental Protection Wetlands Program / Agriculture Natural Resources Conservation Service TR-55 Manual	United States Department of
Procedure:	Determine unit peak discharge using Figure 1 or 2. Figure 2 is in tabula the tc, read the unit peak discharge (qu) from Figure 1 or Table in Figur following units: cfs/mi ² /watershed inches (csm/in).	
	Compute Q Rate using the following equation:	
	Q = (qu) (A) (WQV)	
	where:	

Q = flow rate associated with first 1" of runoff

qu = the unit peak discharge, in csm/in.

A = impervious surface drainage area (in square miles) WQV = water quality volume in watershed inches (1" in this case)

Structure Name	Impv. (acres)	A (miles ²)	t _c (min)	t _c (hr)	WQV (in)	qu (csm/in.)	Q (cfs)
WQU 1	3.81	0.0059531	6.0	0.100	1.00	774.00	4.61
WQU 2	0.86	0.0013469	6.0	0.100	1.00	774.00	1.04

Illicit Discharge Compliance Statement

Responsibility:

The Owner is responsible for ultimate compliance with all provisions of the Massachusetts Stormwater Management Policy, the USEPA NPDES Construction General Permit and responsible for identifying and eliminating illicit discharges (as defined by the USEPA).

OWNER NAME:	The Gutierrez Company
ADDRESS:	200 Summit Drive, Suite 400
	Burlington, MA 01803
TEL. NUMBER:	(781) 272-7000

Engineer's Compliance Statement:

To the best of my knowledge, the attached plans, computations and specifications meet the requirements of Standard 10 of the Massachusetts Stormwater Handbook regarding illicit discharges to the stormwater management system and that no detectable illicit discharges exist on the site. All documents and attachments were prepared under my direction and qualified personnel properly gathered and evaluated the information submitted, to the best of my knowledge.

Included with this statement are site plans, drawn to scale, that identify the location of systems for conveying stormwater on the site and show that these systems do not allow the entry of any illicit discharges into the stormwater management system. The plans also show any systems for conveying wastewater and/or groundwater on the site and show that there are no connections between the stormwater and wastewater systems.

For a redevelopment project (if applicable), all actions taken to identify and remove illicit discharges, including without limitation, visual screening, dye or smoke testing, and the removal of any sources of illicit discharges to the stormwater management system are documented and included with this statement.